Nokia Customer Care

Service Manual

RM-88 (Nokia E62) **Mobile Terminal** Part No: 9250256 (Issue 1)

COMPANY CONFIDENTIAL

NOKIA

Copyright © 2006 Nokia. All rights reserved.

Nokia E62 Service Manual Structure

General Information
Parts Lists and Component Layouts
Service Software Instructions
Service Tools and Service Concepts
Disassembly / Reassembly Instructions
BB Troubleshooting and Manual Tuning Guide
RF Troubleshooting and Manual Tuning Guide
System Module
Schematics
Glossary

Battery information

Note: A new battery's full performance is achieved only after two or three complete charge and discharge cycles!

The battery can be charged and discharged hundreds of times but it will eventually wear out. When the operating time (talk-time and standby time) is noticeably shorter than normal, it is time to buy a new battery.

Use only batteries approved by the phone manufacturer and recharge the battery only with the chargers approved by the manufacturer. Unplug the charger when not in use. Do not leave the battery connected to a charger for longer than a week, since overcharging may shorten its lifetime. If left unused a fully charged battery will discharge itself over time.

Temperature extremes can affect the ability of your battery to charge.

For good operation times with Ni-Cd/NiMh batteries, discharge the battery from time to time by leaving the product switched on until it turns itself off (or by using the battery discharge facility of any approved accessory available for the product). Do not attempt to discharge the battery by any other means.

Use the battery only for its intended purpose.

Never use any charger or battery which is damaged.

Do not short-circuit the battery. Accidental short-circuiting can occur when a metallic object (coin, clip or pen) causes direct connection of the + and - terminals of the battery (metal strips on the battery) for example when you carry a spare battery in your pocket or purse. Short-circuiting the terminals may damage the battery or the connecting object.

Leaving the battery in hot or cold places, such as in a closed car in summer or winter conditions, will reduce the capacity and lifetime of the battery. Always try to keep the battery between 15°C and 25°C (59°F and 77° F). A phone with a hot or cold battery may temporarily not work, even when the battery is fully charged. Batteries' performance is particularly limited in temperatures well below freezing.

Do not dispose of batteries in a fire!

Dispose of batteries according to local regulations (e.g. recycling). Do not dispose as household waste.

Company Policy

Our policy is of continuous development; details of all technical modifications will be included with service bulletins.

While every endeavour has been made to ensure the accuracy of this document, some errors may exist. If any errors are found by the reader, NOKIA MOBILE PHONES Business Group should be notified in writing/e-mail.

Please state:

- Title of the Document + Issue Number/Date of publication
- Latest Amendment Number (if applicable)
- Page(s) and/or Figure(s) in error

Please send to:

NOKIA CORPORATION Nokia Mobile Phones Business Group Nokia Customer Care PO Box 86 FIN-24101 SALO Finland E-mail: Service.Manuals@nokia.com

Care and maintenance

This product is of superior design and craftsmanship and should be treated with care. The suggestions below will help you to fulfil any warranty obligations and to enjoy this product for many years.

- Keep the phone and all its parts and accessories out of the reach of small children.
- Keep the phone dry. Precipitation, humidity and all types of liquids or moisture can contain minerals that will corrode electronic circuits.
- Do not use or store the phone in dusty, dirty areas. Its moving parts can be damaged.
- Do not store the phone in hot areas. High temperatures can shorten the life of electronic devices, damage batteries, and warp or melt certain plastics.
- Do not store the phone in cold areas. When it warms up (to its normal temperature), moisture can form inside, which may damage electronic circuit boards.
- Do not drop, knock or shake the phone. Rough handling can break internal circuit boards.
- Do not use harsh chemicals, cleaning solvents, or strong detergents to clean the phone.
- Do not paint the phone. Paint can clog the moving parts and prevent proper operation.
- Use only the supplied or an approved replacement antenna. Unauthorised antennas, modifications or attachments could damage the phone and may violate regulations governing radio devices.

All of the above suggestions apply equally to the product, battery, charger or any accessory.

ESD protection

Nokia requires that service points have sufficient ESD protection (against static electricity) when servicing the phone.

Any product of which the covers are removed must be handled with ESD protection. The SIM card can be replaced without ESD protection if the product is otherwise ready for use.

To replace the covers ESD protection must be applied.

All electronic parts of the product are susceptible to ESD. Resistors, too, can be damaged by static electricity discharge.

All ESD sensitive parts must be packed in metallized protective bags during shipping and handling outside any ESD Protected Area (EPA).

Every repair action involving opening the product or handling the product components must be done under ESD protection.

ESD protected spare part packages MUST NOT be opened/closed out of an ESD Protected Area.

For more information and local requirements about ESD protection and ESD Protected Area, contact your local Nokia After Market Services representative.

Warnings and cautions

Warnings

- IF THE DEVICE CAN BE INSTALLED IN A VEHICLE, CARE MUST BE TAKEN ON INSTALLATION IN VEHICLES FITTED WITH ELECTRONIC ENGINE MANAGEMENT SYSTEMS AND ANTI-SKID BRAKING SYSTEMS. UNDER CERTAIN FAULT CONDITIONS, EMITTED RF ENERGY CAN AFFECT THEIR OPERATION. IF NECESSARY, CONSULT THE VEHICLE DEALER/ MANUFACTURER TO DETERMINE THE IMMUNITY OF VEHICLE ELECTRONIC SYSTEMS TO RF ENERGY.
- THE PRODUCT MUST NOT BE OPERATED IN AREAS LIKELY TO CONTAIN POTENTIALLY EXPLOSIVE ATMOSPHERES, FOR EXAMPLE, PETROL STATIONS (SERVICE STATIONS), BLASTING AREAS ETC.
- OPERATION OF ANY RADIO TRANSMITTING EQUIPMENT, INCLUDING CELLULAR TELEPHONES, MAY INTERFERE WITH THE FUNCTIONALITY OF INADEQUATELY PROTECTED MEDICAL DEVICES. CONSULT A PHYSICIAN OR THE MANUFACTURER OF THE MEDICAL DEVICE IF YOU HAVE ANY QUESTIONS. OTHER ELECTRONIC EQUIPMENT MAY ALSO BE SUBJECT TO INTERFERENCE.
- BEFORE MAKING ANY TEST CONNECTIONS, MAKE SURE YOU HAVE SWITCHED OFF ALL EQUIPMENT.

Cautions

- Servicing and alignment must be undertaken by qualified personnel only.
- Ensure all work is carried out at an anti-static workstation and that an anti-static wrist strap is worn.
- Ensure solder, wire, or foreign matter does not enter the telephone as damage may result.
- Use only approved components as specified in the parts list.
- Ensure all components, modules, screws and insulators are correctly re-fitted after servicing and alignment.
- Ensure all cables and wires are repositioned correctly.
- Never test a mobile phone WCDMA transmitter with full Tx power, if there is no possibility to perform the measurements in a good performance RF-shielded room. Even low power WCDMA transmitters may disturb nearby WCDMA networks and cause problems to 3G cellular phone communication in a wide area.
- During testing never activate the GSM or WCDMA transmitter without a proper antenna load, otherwise GSM or WCDMA PA may be damaged.

Copyright

Copyright © 2006 Nokia. All rights reserved.

Reproduction, transfer, distribution or storage of part or all of the contents in this document in any form without the prior written permission of Nokia is prohibited.

Nokia, Nokia Connecting People, and Nokia X and Y are trademarks or registered trademarks of Nokia Corporation. Other product and company names mentioned herein may be trademarks or tradenames of their respective owners.

Nokia operates a policy of continuous development. Nokia reserves the right to make changes and improvements to any of the products described in this document without prior notice.

Under no circumstances shall Nokia be responsible for any loss of data or income or any special, incidental, consequential or indirect damages howsoever caused.

The contents of this document are provided "as is". Except as required by applicable law, no warranties of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose, are made in relation to the accuracy, reliability or contents of this document. Nokia reserves the right to revise this document or withdraw it at any time without prior notice.

The availability of particular products may vary by region.

IMPORTANT

This document is intended for use by qualified service personnel only.

Amendment Record Sheet

Amendment No	Date	Inserted By	Comments
Issue 1	06/2006	ET	

Nokia Customer Care

1 — General Information

Battery endurance

Battery	Capacity (mAh)	Talk time	Stand-by
BP-5L	1500	up to 6 hrs	up to 12 days

Charging times

	ACP-4
2 h 10 min	

Environmental conditions

Environmental condition	Ambient temperature	Notes
Normal operation	-15ºC+55ºC	Specifications fulfilled
Reduced performance	-25°C15°C +55°C+70°C	Operational for shorts periods only
Intermittent operation	-40°C15°C +70°C+85 °C	Operation not guaranteed but an attempt to operate does not damage the phone.
No operation or storage	<-40°C>+85°C	No storage or operation: an attempt may damage the phone.
Charging allowed	-25ºC+50ºC	
Long term storage conditions	0°C+85°C	

DC characteristics

Signal	Min	Nom	Max	Note
VBAT	3.1V	3.7V	4.2V (charging high limit voltage	3.1V SW cut off

Enhancement	Туре
Advanced Car Kit	CK-7W
Mobile Charger	DC-4

Technical specifications

Transceiver general specifications

Unit	Dimensions (L x W x T)	Weight (g)	Volume (cm ³)
Transceiver with BP-5L 1500mAh li-ion battery back	117.1 x 69.7 x 17.8 / 13.3 mm	144 (including BP-5L battery)	103.4

Main RF characteristics for GSM850/900/1800/1900 phones

Parameter	Unit
Cellular system	GSM850, EGSM900 and GSM1800/1900
Rx frequency band	GSM850: 869-894 MHz
	EGSM900: 925 - 960 MHz
	GSM1800: 1805 - 1880 MHz
	GSM1900: 1930 - 1990 MHz
Tx frequency band	GSM850: 824-849 MHz
	EGSM900: 880 - 915 MHz
	GSM1800: 1710 - 1785 MHz
	GSM1900: 1850 - 1910 MHz
Output power	GSM850: +5 + 33 dBm/3.2mW 2W
	GSM900: +5+31.2dBm / 3.2mW 1.3 W
	GSM1800: +0 +30dBm/1.0mW 1W
	GSM1900: 030.9dBm/1.0mW 1.26W
Number of RF channels	GSM850: 123
	GSM900: 173
	GSM1800: 373
	GSM1900: 298
Channel spacing	200 kHz
Number of Tx power levels	GSM850: 15
	GSM900: 15
	GSM1800: 16
	GSM1900: 16

Enhancement	Туре
Wireless Boom Headset	HS-4W
Wireless Headset	HDW-3
Wireless Headset	HS-26W
Wireless Headset	HS-11W
Wireless Clip-on Headset	HS-21W
Wireless Headset	HS-36W
Wireless Headset	HS-58W

Table 2 Data

Enhancement	Туре
Connectivity cable	DKE-2
Mini SD card 128 MB	MU-17
Mini SD card 256 MB	MU-18
Mini SD card 512 MB	MU-23
Mini SD card 1GB	MU-24

Table 3 Power

Enhancement	Туре
Battery	BP-5L
Nokia Compact Charger	AC-3U
Nokia Travel Charger	AC-4U
Charger Adapter	CA-44

Table 4 Messaging

Enhancement	Туре
Wireless Keyboard upgrade	SU-8W

Table 5 Positioning

Enhancement	Туре		
Wireless GPS Module update	LD-1W		

Table 6 Car

Enhancement	Туре		
Wireless Plug-in Car Handsfree	HF-6W		

Productivity

- SMS, MMS and email
- MS Word, PowerPoint , Excel and Adobe PDF viewers
- PIM (Calendar & Contacts)
- Internet browser
- Video streaming (3GPP)
- Logs (last calls , timers and history list)
- Instant messaging
- Java[™] MIDP 2.0, CLDC 1.13D API, PIM API, File access API
- MP3
- Data Transfer
- Settings Wizard/Access Point Configurator

Sales package

- Transceiver RM-88
- BP-5L Li-ion Battery Cell
- AC-4U Charger
- User Guide
- CD-ROM
- Headset HS-40
- USB Cable DKE-2
- Quick Start Guide

Product and module list

Module name	Type code	Notes
System/RF Module	1QR	Main PWB with components
EL-Dome sheet		
Chassis Assy		
Display Module		
Keyboard		
A-cover Assy		
SW Module		

Mobile enhancements

Table 1 Audio

Enhancement	Туре		
Mono Headset	HS-40		
Basic Stereo Headset	HS-47		

RM-88 product selection

RM-88 is a GSM handportable phone, supporting the EGSM 850/900/1800/1900 bands.

The MMS implementation follows the OMA MMS standard release 1.2.

WAP 2.0 compatible browser supports XHTML Mobile Profile (MP) and uses a TCP/IP stack to communicate with a gateway in network.

RM-88 uses Symbian 9.1a operating system and supports also MIDP Java 2.0 & CLDC1.1, providing a good platform for 3rd party applications.

Figure 1 View of RM-88

RM-88 product features and sales package

Bearers & transport

• GSM Quadband World Phone E850/900/1800/1900 EGPRS (class B, Multislot class 11)

Software platform

• SW platform: Nokia Series 60 rel 3.0

Connectivity

- Bluetooth (Headset & Handsfree profiles, BIP, GOP)
- Mini SD Card
- Mini-USB interface
- PC Suite connectivity with USB & Bluetooth

Table of Contents

RM-88 product features and sales package
Product and module list1–6 Mobile enhancements
Mobile enhancements1–6
Technical specifications1–8
Transceiver general specifications1–8
Main RF characteristics for GSM850/900/1800/1900 phones1-8
Battery endurance1–9
Environmental conditions1–9

List of Tables

Table 1 Audio	1-6
Table 2 Data	1-7
Table 3 Power	1-7
Table 4 Messaging	1-7
Table 5 Positioning	1-7
Table 6 Car	1-7

List of Figures

Figure 1 View of RM-88	1-5	5

Nokia Customer Care

2 — Parts Lists and Component Layouts

Table of Contents

Exploded view	2–5
Exploded view	2–5
Parts lists	2-6
Mechanical spare parts list	2-6
RM-88 component parts list	2-7
Component layouts	2–30
Components overview	2–30
Component layout - top (1qr_10a_asmdrw_t)	2-32

List of Figures

Figure	Exploded view of RM-882-	-5

Exploded view

Exploded view

Parts lists

Mechanical spare parts list

Note: For Nokia product codes, please refer to the latest Service Bulletins on the Partner Website (PWS). To ensure you are always using the latest codes, please check the PWS on a daily basis.

Bold = ASSY

"XXXXXXX" = VARIANTS

"-" = NOT AVAILABLE

"??????" = AVAILABLE AS SPARE PART

I0xx = ITEM codes for upper or mono block

I1xx = ITEM codes for hinge block

I2xx = ITEM codes for lower block

I3xx = ITEM codes for soldered spare parts on the upper, hinge or lower block and not exchangable

ITEM/ CIRCUIT REF.	PART NO	PART NAME	QTY	
1009	???????	Window Assembly 040-012649	1	
A1	???????	A-Cover Assembly Silver 040-012429	1	
I026	???????	SCREW M1.6X5.7 DMD12402 TORX SILV	6	
I008	???????	SCREW M1.4X3.4 TORX PLUS 4IP	1	
I007	???????	Remform screw 1.8x8	1	
I019	???????	Battery Release Spring	1	
I028	???????	BLANK LABEL 29mmx18mm EXP65673	1	
I021	???????	Joystick Button 040-012658	1	
I018	???????	Battery Release Button 040-012946	1	
I023	???????	Joystick module tape 040-020164	1	
I005	XXXXXXX	Operator Logo painted Silver 040-012438	1	
I027	XXXXXXX	Antenna Lid, painted Silver 040-012654	1	
I029	???????	Battery Cover painted 040-012428 Silver	1	
I012	???????	EL-Dome Sheet 040-012655	1	
1006	XXXXXXX	KEYMAT PRINTED SILVER 040-021863 EN- NL	1	
I020	??????	1RE JOYSTICK ASSEMBLY	1	
A2	???????	Chassis Assembly 040-012635	1	
I017	???????	CONNECTOR HOUSING ASSEMBLY 040-015883	1	
I022	???????	Side Button Module 040-012642	1	
I011	???????	LCD AM 320x240 COG 16MCo Oxford	1	

ITEM/ CIRCUIT REF.	PART NO	PART NAME	QTY
I016	???????	MIC MOD+HOLDER TOMAHAWK -42+-3DB	1
I010	???????	EARPIECE+SPRING 22+/-3DB 32R 7X11	1
I015	???????	CONN CHR DIA 2.0MM COMPRESS	1
A3	???????	ANTENNA MOD GSM/WCDMA P2524	1

RM-88 component parts list

Component parts list (1qr_10a_asmmtx)

Note: For Nokia product codes, please refer to the latest Service Bulletins on the Partner Website (PWS). To ensure you are always using the latest codes, please check the PWS on a daily basis.

Item	Side	Grid reference		Description and value			
A2400	Bottom	с	8	SHIELD_040 _015795	PWB POWER SHIELD CAN	~	~
A2801	Bottom	с	13	SHIELD_PWB _CAN_RAP	SHIELD PWB CAN RAP	~	~
A4801	Bottom	к	10	SHIELD_040 _017960	PWB CAN COMBO	~	~
A4802	Bottom	L	7	SHIELD_PWB _CAN_APE	SHIELD PWB CAN APE	~	~
A6001	Bottom	L	4	SHIELD_PWB _CAN_WCDM A	SHIELD PWB CAN WCDMA	~	~
A7506	Bottom	G	16	SHIELD_PWB _CAN_PA	SHIELD PWB CAN Pa	~	~
A7507	Bottom	G	13	SHIELD_PWB _CAN_PIHI	SHIELD PWB CAN PIHI	~	~
B2200	Bottom	С	10	CRYSTAL_3.3 X1.6_H0.9	CRYSTAL 32.768KHZ +-30PPM 12.5PF	32.768kHz	~
C2000	Bottom	D	5	0402C	Chipcap 5% NP0	27p	50V
C2001	Bottom	D	5	0603C_H0.9 5	CHIPCAP X5R 1U K 25V 0603	1u0	25V
C2002	Bottom	E	4	0603C	CHIPCAP X5R 2U2 K 6V3 0603	2u2	6V3
C2003	Bottom	E	4	0402C	CHIPCAP X7R 33N K 10V 0402	33n	10V

Item	Side	Grid re	ference	Description and value			
C2004	Bottom	E	4	0402C	CHIPCAP X7R 33N K 10V 0402	33n	10V
C2006	Bottom	E	3	0402C	Chipcap X7R 10% 16V 0402	10n	16V
C2025	Bottom	F	4	0805C	CHIPCAP X5R 10U M 6V3 0805	100	6V3
C2026	Bottom	F	4	0805C	CHIPCAP X5R 10U M 6V3 0805	100	6V3
C2027	Bottom	F	3	0402C	Chipcap 5% X7R	3n3	50V
C2028	Bottom	F	3	0402C	Chipcap 5% NPO	47p	50V
C2029	Bottom	F	3	0402C	Chipcap 5% X7R	3n3	50V
C2030	Bottom	Н	3	0402C	Chipcap 5% X7R	270p	50V
C2031	Bottom	F	3	0402C	Chipcap 5% NPO	47p	50V
C2071	Bottom	к	18	TANT_C_6.2 X3.4_H1.7	CHIPTCAP 150U M 10V 6X3.2X1.5	150u_10V	10V
C2100	Bottom	G	3	0402C	CHIPCAP X7R 33N K 10V 0402	33n	10V
C2101	Bottom	G	3	0402C	CHIPCAP X7R 33N K 10V 0402	33n	10V
C2102	Bottom	G	3	0603C	CHIPCAP X5R 2U2 K 6V3 0603	2u2	6V3
C2103	Тор	F	22	0402C	Chipcap 5% X7R	1n0	50V
C2104	Тор	F	22	0402C	Chipcap 5% X7R	1n0	50V
C2200	Bottom	В	9	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C2201	Bottom	D	9	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C2202	Bottom	E	10	0402C	Chipcap X7R 10% 50V 0402	1n0	50V

Item	Side	Grid re	ference		Description	and value	
C2203	Bottom	С	10	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
C2204	Bottom	С	10	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
C2205	Bottom	В	10	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
C2206	Bottom	С	10	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
C2207	Bottom	D	10	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
C2208	Bottom	С	10	0402C	Chipcap 5% NPO	27p	50V
C2209	Bottom	С	10	0402C	Chipcap 5% NPO	22p	50V
C2210	Bottom	D	7	0603C	CHIPCAP X5R 1U K 16V 0603	1u0	16V
(2211	Bottom	D	7	0603C	CHIPCAP X5R 4U7 K 6V3 0603	4u7	6.3V
C2212	Bottom	С	7	0402C	CHIPCAP X5R 1U5 K 4V 0402	1u5	4V
C2213	Bottom	D	9	0402C	CHIPCAP X5R 1U5 K 4V 0402	1u5	4V
C2214	Bottom	D	9	0402C	CHIPCAP X5R 1U5 K 4V 0402	1u5	4V
C2215	Bottom	E	8	0402C	CHIPCAP X5R 1U5 K 4V 0402	1u5	4V
C2216	Bottom	E	8	0402C	CHIPCAP X5R 1U5 K 4V 0402	1u5	4V
(2217	Bottom	D	10	0402C	CHIPCAP X5R 1U5 K 4V 0402	1u5	4V
C2218	Bottom	С	9	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
C2219	Bottom	D	10	0402C	CHIPCAP X5R 1U5 K 4V 0402	1u5	4V
C2220	Bottom	с	8	0402C	CHIPCAP X5R 1U5 K 4V 0402	1u5	4V
C2221	Bottom	E	7	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C2222	Bottom	D	7	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V

Item	Side	Grid re	ference				
(2223	Bottom	В	8	0402C	Chipcap X7R 10% 16V 0402	10n	16V
C2224	Bottom	В	9	0402C	Chipcap X7R 10% 16V 0402	10n	16V
(2225	Bottom	D	9	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C2226	Bottom	D	8	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C2227	Bottom	с	7	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C2228	Bottom	D	8	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
(2229	Bottom	с	7	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
C2230	Bottom	D	9	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
(2231	Bottom	В	8	0805C	CHIPCAP X5R 10U M 6V3 0805	100	6V3
(2232	Bottom	D	8	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C2270	Bottom	В	8	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
C2271	Bottom	В	8	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
C2272	Bottom	В	9	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
(2273	Bottom	с	7	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
C2274	Bottom	с	7	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
C2275	Bottom	В	7	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
C2281	Bottom	E	8	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C2300	Bottom	с	6	0402C	Chipcap X7R 10% 16V 0402	10n	16V
(2301	Bottom	В	6	0805C	CHIPCAP X5R 22U M 6V3 0805	22u	6V3

Item	Side	Grid re	ference		Description and value			
C2302	Bottom	В	7	0805C	CHIPCAP X5R 22U M 6V3 0805	22u	6V3	
C2303	Bottom	D	5	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V	
C2304	Bottom	с	7	0402C	Chipcap X7R 10% 16V 0402	10n	16V	
C2305	Bottom	E	5	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V	
C2306	Bottom	с	5	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V	
C2307	Bottom	с	5	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V	
C2309	Bottom	В	5	0805C	CHIPCAP X5R 22U M 6V3 0805	22u	6V3	
(2312	Bottom	С	5	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V	
(2313	Bottom	D	5	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V	
C2314	Bottom	D	6	0603C	CHIPCAP X5R 4U7 K 6V3 0603	4u7	6.3V	
C2315	Bottom	E	7	0603C_H0.9 5	CHIPCAP X5R 1U K 25V 0603	1u0	25V	
C2316	Bottom	E	7	0402C	Chipcap 5% NPO	56p	50V	
(2317	Bottom	D	7	0402C	Chipcap 5% NPO	27p	50V	
(2319	Bottom	E	7	0603C_H0.9 5	CHIPCAP X5R 1U K 25V 0603	1u0	25V	
C2700	Bottom	D	16	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V	
C2800	Bottom	I	11	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V	
C2801	Bottom	L	10	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V	
C2802	Bottom	I	10	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V	

Item	Side	Grid re	ference	Description and value			
C2803	Bottom	I	10	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C2804	Bottom	I	12	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C2805	Bottom	L	9	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C2807	Bottom	L	10	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C2808	Bottom	I	11	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C2809	Bottom	I	11	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C2810	Bottom	I	9	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C2811	Bottom	L	9	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C2812	Bottom	I	10	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C2813	Bottom	L	12	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C2814	Bottom	I	11	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C2815	Bottom	к	12	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
(2818	Bottom	J	12	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C2819	Bottom	L	12	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C2820	Bottom	I	9	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V

Item	Side	Grid re	ference	Description and value			
C2830	Bottom	L	11	0402C	Chipcap X7R 10% 50V 0402	1n0	50V
C3000	Bottom	к	8	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C3001	Bottom]	7	0402C	Chipcap X7R 10% 16V 0402	10n	16V
C3002	Bottom	J	7	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C3003	Bottom	J	7	0402C	Chipcap X7R 10% 16V 0402	10n	16V
C3004	Bottom	J	6	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C3005	Bottom	м	7	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C3006	Bottom	L	8	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C3007	Bottom	м	6	0402C	Chipcap X7R 10% 16V 0402	10n	16V
C3008	Bottom]	7	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C3009	Bottom	м	7	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C3010	Bottom	J	12	0402C	Chipcap +-0.25pF NP0	3p3	50V
C3011	Bottom]	6	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C3017	Bottom	L	8	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C3018	Bottom	М	6	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C3100	Bottom	G	6	0402C	CHIPCAP NP0 27P J 50V 0402	27p0	50V

Item	Side	Grid re	ference	Description and value			
C4400	Тор	с	22	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C4401	Тор	с	22	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C4402	Тор	С	22	0402C	Chipcap 5% NPO	27p	50V
C4403	Тор	с	22	0402C	Chipcap 5% NPO	27p	50V
C4404	Bottom	I	4	0402C	Chipcap 5% NPO	68p	50V
C4405	Bottom	I	4	0402C	Chipcap X7R 10% 16V 0402	10n	16V
C4408	Bottom	Н	2	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C4409	Bottom	I	2	0603C	CHIPCAP X5R 4U7 K 6V3 0603	4u7	6.3V
(4410	Bottom	Н	2	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C4411	Bottom	I	2	0402C	Chipcap 5% NPO	27p	50V
(4414	Bottom	I	5	0603C	CHIPCAP X5R 1U K 16V 0603	1u0	16V
C4420	Bottom	В	13	0402C	Chipcap X7R 5% 16V 0402	10n	16V
(4421	Bottom	В	13	0402C	Chipcap X7R 5% 16V 0402	10n	16V
(4424	Bottom	I	5	0402C	CHIPCAP X5R 1U K 6V3 0402	1u0	6.3V
C5200	Bottom	L	12	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C5201	Bottom	м	11	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C5202	Bottom	L	11	0402C	Chipcap X7R 10% 16V 0402	10n	16V
C5203	Bottom	м	11	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V

Item	Side	Grid re	ference	Description and value			
C5204	Bottom	L	11	0402C_H0.6	CHIPCAP X5R 100N M 16V 0402	100n	16V
C6031	Bottom	К	3	0402C	Chipcap 5% NPO	18p	50V
C6032	Bottom	L	3	0402C	Chipcap 5% NPO	100p	50V
C6033	Bottom	L	3	0402C	Chipcap X7R 10% 16V 0402	10n	16V
C6034	Bottom	L	3	0402C	Chipcap X7R 10% 16V 0402	10n	16V
C6035	Bottom	L	4	0402C	Chipcap X7R 10% 16V 0402	10n	16V
C6036	Bottom	L	3	0402C	Chipcap X7R 10% 16V 0402	10n	16V
C6037	Bottom	L	4	0402C	CHIPCAP X5R 1U5 K 4V 0402	1u5	4V
C6038	Bottom	К	4	0402C	Chipcap X7R 10% 16V 0402	10n	16V
C6039	Bottom	J	4	0402C	Chipcap 5% NPO	18p	50V
C6041	Bottom	К	3	0402C	Chipcap +-0.25pF NP0	2p7	50V
C6042	Bottom	К	4	0402C	Chipcap +-0.25pF NP0	2p7	50V
C6050	Bottom	К	3	0402C	CHIPCAP X5R 1U K 6V3 0402	1u0	6.3V
C7501	Bottom	Н	13	0402C	Chipcap +-0.25pF NP0	2p7	50V
C7503	Bottom	F	12	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C7504	Bottom	Н	13	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C7505	Bottom	F	12	0402C	CHIPCAP X5R 1U K 6V3 0402	1u0	6.3V
C7506	Bottom	F	12	0603C	CHIPCAP X5R 1U K 6V3 0603	1u0	6.3V
C7507	Bottom	F	12	0402C	Chipcap X7R 5% 16V 0402	10n	16V
C7508	Bottom	F	13	0402C	Chipcap 5% NP0	18p	50V

Item	Side	Grid re	ference	Description and value			
C7509	Bottom	F	12	0402C	Chipcap +-0.25pF NP0	2p7	50V
C7510	Bottom	F	13	0402C	Chipcap 5% NPO	27p	50V
					CHIPCAP NPO		
C7511	Bottom	G	12	0603C	0603	2n2	16V
C7512	Bottom	G	11	0402C	Chipcap +-0.25pF NP0	2p7	50V
C7513	Bottom	F	12	0402C	Chipcap X7R 10% 16V 0402	10n	16V
C7515	Bottom	н	12	0402C	Chipcap +-0.25pF NP0	3p3	50V
C7516	Bottom	G	12	0402C	Chipcap 5% X7R	470p	50V
C7517	Bottom	G	12	0402C	Chipcap +-0.25pF NP0	3p3	50V
					CHIPCAP X5R		
C7518	Bottom	F	13	0402C	0402	100n	10V
C7520	Bottom	н	16	0402C	Chipcap +-0.25pF NP0	3p3	50V
C7522	Bottom	F	16	0402C	Chipcap +-0.25pF NP0	1p8	50V
C7523	Bottom	Н	16	0402C	CHIPCAP X5R 1U K 6V3 0402	1u0	6.3V
C7524	Bottom	F	15	0402C	CHIPCAP X5R 1U K 6V3 0402	1u0	6.3V
C7525	Bottom	F	17	0402C	Chipcap 5% NPO	18p	50V
C7530	Bottom	м	4	0402C	Chipcap X7R 10% 25V 0402	4n7	25V
C7590	Bottom	L	3	0402C	Chipcap X7R 5% 16V 0402	10n	16V
C7591	Тор	к	22	0402C	Chipcap 5% NPO	100p	50V
C7593	Тор]	22	0402C	Chipcap +-0.25pF NP0	8p2	50V
C7594	Тор]	23	0402C	Chipcap 5% NPO	12p	50V
C7595	Тор]	22	0402C	Chipcap 5% NPO	12p	50V
Item	Side	Grid re	ference		Description	and value	
-------	--------	---------	---------	------------------------	--	------------------------	-----
C7596	Тор	к	23	0402C	Chipcap 5% NPO	100p	50V
C7597	Bottom	м	3	0402C	Chipcap 5% NP0	100p	50V
D2200	Bottom	с	8	TFBGA_108	RETU 3.02 TSA1GJWE TFBGA108	~	~
D2800	Bottom	к	10	uBGA_289	RAPGSM V1.1 PA uBGA289	~	~
D3000	Bottom	L	7	FBGA133_11 .6X13.1	COMBO 256MNOR +1GM3 +256MDDRSDR AM FBGA133	8Mx16/16M x16/8Mx16	~
D4400	Bottom	С	13	LLP_44	MCU E 8BIT COP8TAB5HYQ 8 LLP44	~	~
F2000	Bottom	С	4	0603_FUSE_ AVX2MATS	SM FUSE F 2.0A 32V	2A	~
G2200	Bottom	В	12	BATTER_EEC EP	RTC BACUP CAPAC 311 SIZE FOR 2.6V 4UAH	2.6V	~
G7500	Bottom	Н	12	VCO_DCS027 33	VCO 3296-3980MH Z 4-BAND MATSUSHITA	3296-3980 MHz	~
G7501	Bottom	F	11	NKG3176B_ H1.0	VCTCX0 38.4MHZ 2.5V	38.4MHz	~
L2000	Bottom	D	4	0603_BLM	FERR.BEAD 220R/100M 2A 0R05 0603	220R/ 100MHz	~
L2100	Тор	F	23	0405_2_MAT SU	CHIP BEAD Array 2X1000r 0405	2x1000R/ 100MHz	~
L2102	Bottom	В	20	COIL_0603C S	CHIP COIL 56N J Q38/250MHZ 0603	56nH	~
L2103	Bottom	В	20	COIL_0603C S	CHIP COIL 56N J Q38/250MHZ 0603	56nH	~
L2202	Bottom	E	9	0603_BLM	FERR.BEAD 220R/100M 2A 0R05 0603	220R/ 100MHz	~

Item	Side	Grid re	ference		Description	and value	
L2203	Bottom	E	9	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~
L2204	Bottom	E	9	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~
L2205	Bottom	E	9	0603_BLM	FERR.BEAD 220R/100M 2A 0R05 0603	220R/ 100MHz	~
L2206	Bottom	E	8	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~
L2270	Bottom	В	8	0603_BLM	FERR.BEAD 220R/100M 2A 0R05 0603	220R/ 100MHz	~
L2271	Bottom	В	8	0603_BLM	FERR.BEAD 220R/100M 2A 0R05 0603	220R/ 100MHz	~
L2272	Bottom	с	8	0603_BLM	FERR.BEAD 220R/100M 2A 0R05 0603	220R/ 100MHz	~
L2273	Bottom	В	8	0603_BLM	FERR.BEAD 220R/100M 2A 0R05 0603	220R/ 100MHz	~
L2301	Bottom	В	5	0603_BLM	FERR.BEAD 220R/100M 2A 0R05 0603	220R/ 100MHz	~
L2302	Bottom	В	6	CHOKE_SER4 00_H1.2	INDUCT WW 10UH 0A65 0R35 4X4X1.2	10uH	~
L2304	Bottom	D	6	CHOKE_SER3 00	CHOKE 22U M 1R5 0.35A	22uH	~
L2305	Bottom	D	5	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~
L2306	Bottom	с	5	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~
L4400	Тор	с	22	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~
L4401	Тор	с	22	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~

Item	Side	Grid re	ference		Description	and value	
				CHOKE_ELT3	COIL 0.47MH 50MA 3.3X3.4X1.4M		
L4402	Bottom	I	5	KN152C	М	0.47MH	~
L5200	Bottom	L	12	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~
L6030	Bottom	к	3	0402L	CHIP COIL 2N7 +-0N3 Q29/800M 0402	2n7H	~
L6031	Bottom	к	4	0402L	CHIP COIL 2N7 +-0N3 Q29/800M 0402	2n7H	~
L6032	Bottom	к	4	0402L	CHIP COIL 22N J Q28/800M 0402	22nH	~
L7500	Bottom	G	14	0402L	CHIP COIL 18N J Q29/800M 0402	18nH	~
L7501	Bottom	G	14	0402L	CHIP COIL 33N J Q23/800M 0402	33nH	~
L7502	Bottom	F	13	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~
L7503	Bottom	F	16	0402LQW	CHIP COIL 27N C Q25/250MHZ 0402	27nH	~
L7504	Bottom	G	14	0402L	CHIP COIL 47N J Q23/800M 0402	47nH	~
L7505	Bottom	G	14	0402L	CHIP COIL 22N J Q28/800M 0402	22nH	~
L7515	Bottom	Н	12	0402L_H0.4 5	CHIP COIL 4N7 +-0N1 Q29/1GHZ 0402	4n7H	~
L7530	Bottom	н	14	0402L	FERR.BEAD 240R7100M 0.4A 0R4 0402	240R/ 100MHz	~

Item	Side	Grid ret	ference		Description	and value	
L7531	Bottom	F	14	0402L	FERR.BEAD 240R7100M 0.4A 0R4 0402	240R/ 100MHz	~
L7591	Тор	J	22	0402L	CHIP COIL 6N8 J Q27/800M 0402	6n8H	~
L7592	Тор	К	23	0402L_P0L2	CHIP COIL 82N +-0N3 Q17/300M 0402	82nH	~
M2100	Bottom	C	4	VIBRA_M_KH N4NX1RA	SMD VIBRA MOTOR 1.3V 90MA 9000RPM	~	~
N2300	Bottom	с	6	TFBGA_84_6 .15X6.15	TAHVO V5.2 LF TFBGA84	~	~
N2301	Bottom	E	6	USMD8_1.69 X1.69	WHITE LED DRIVER 4LEDS 500MW 8BUMP USMD8	~	~
N4401	Bottom	н	2	IRDA_RPM9 60	IRDA 1.15MBPS 2.2MM ROHS	~	~
N4402	Bottom	н	4	MSOP_10	EL DRIVER D381B 2-7V MSOP-10	~	~
N4403	Bottom	E	13	SC70_5	1XOP AMP 2.7-5.5V LMV321 SC70-5	~	~
N5200	Bottom	м	11	USMD16_2.0 3X2.03	VREG & LEVEL SHIFT LP3928 USMD16	~	2.8V
N6030	Bottom	L	4	CSP_47_3.85 X4.05	BC4- ROM1.0RDL	~	~
N7505	Bottom	G	13	TFBGA144	AHNE301A TRANCEIVER RFIC TFBGA144	~	~
N7520	Bottom	G	16	RF9282E3.6	PA RF9282E6.3 GSM/EDGE 850/900/1800 /1900	~	~
N7590	Тор	J	22	SC70_6_FAIR	HIGH POWER SPDT RF SW SC70	~	~

Item	Side	Grid re	ference		Description	and value	
R2000	Bottom	E	4	0402R	Resistor 5% 63mW	220R	~
R2001	Bottom	E	4	FLIP_CHIP_8 _1.7X1.7	ASIP SINGLE ENDED MICROPHONE INTERF BGA8	~	~
R2003	Bottom	G	4	0402R	Chipres 0W06 22k F 200ppm 0402	22k	~
R2004	Bottom	G	4	0402R	Chipres 0W06 22k F 200ppm 0402	22k	~
R2006	Bottom	F	3	BGA11	ASIP 4 LINES AUDIO FILTER BGA11	~	~
R2007	Bottom	I	3	uBGA11_1.6 X2.15	ASIP SILIC USB OTG / ESD BGA11	~	~
R2008	Bottom	I	3	0404_RP	RES NETWORK 0W06 220K/ 120K J 0404	220k/120k	~
R2015	Bottom	D	4	BGA4_1.01X 1.07	ASIP TVS BGA4	~	~
R2025	Bottom	F	4	0402R	Resistor 5% 63mW	10R	~
R2026	Bottom	F	4	0402R	Resistor 5% 63mW	10R	~
R2030	Bottom	I	3	0402R	Resistor 5% 63mW	100R	~
R2070	Bottom	к	18	0402_VAR	CHIP VARISTOR VWM14V VC50V 0402	14V/50V	~
R2071	Bottom	с	10	0402_NTH5	NTC RES 47K J B=4050+-3% 0402	47k	~
R2100	Bottom	G	3	FLIP_CHIP_8 _1.7X1.7	ASIP SINGLE ENDED MICROPHONE INTERF BGA8	~	~
R2101	Bottom	G	3	0402R	Resistor 5% 63mW	220R	~
R2104	Тор	F	23	0402_VAR	CHIP VARISTOR VWM14V VC50V 0402	14V/50V	~

Item	Side	Grid re	ference		Description	and value	
R2105	Тор	F	23	0402_VAR	CHIP VARISTOR VWM14V VC50V 0402	14V/50V	~
R2106	Bottom	с	17	0402_VAR	CHIP VARISTOR VWM14V VC50V 0402	14V/50V	~
R2107	Bottom	с	17	0402_VAR	CHIP VARISTOR VWM14V VC50V 0402	14V/50V	~
R2108	Тор	F	22	0402R	Chipres 0W06 jumper 0402	OR	~
R2109	Тор	F	22	0402R	Chipres 0W06 jumper 0402	OR	~
R2200	Bottom	E	10	0402R	Resistor 5% 63mW	100k	~
R2201	Bottom	D	10	0402R	Resistor 5% 63mW	120k	~
R2206	Bottom	В	9	0402R	Resistor 5% 63mW	1k0	~
R2207	Bottom	В	10	0402R	Resistor 5% 63mW	1k0	~
R2208	Bottom	В	10	0402R	Resistor 5% 63mW	1k0	~
R2209	Bottom	В	10	0402R	Resistor 5% 63mW	1k0	~
R2212	Bottom	В	9	0402R	Resistor 5% 63mW	470R	~
R2213	Bottom	D	10	0402R	Resistor 5% 63mW	4k7	~
R2214	Bottom	E	10	0402R	Resistor 5% 63mW	4k7	~
R2216	Bottom	D	10	0402R	CHIPRES OW06 2M2 J 0402	2M2	~
R2307	Bottom	С	5	0402R	Resistor 5% 63mW	100R	~
R2310	Bottom	D	7	0402R	Resistor 5% 63mW	33R	~
R2700	Bottom	D	16	uBGA8_1.47 X1.47	ASIP SIM INTERFACE **LOW CAP**BGA8	~	~

Item	Side	Grid re	ference		Description	and value	
R3000	Bottom	к	8	0402R	Resistor 5% 63mW	4k7	~
R3002	Bottom	I	10	0402R	Resistor 5% 63mW	10R	~
R3003	Bottom	к	8	0402R	Resistor 5% 63mW	4k7	~
R3004	Bottom	к	8	0402R	Resistor 5% 63mW	4k7	~
R3007	Bottom	м	8	0402R	Resistor 5% 63mW	10k	~
R3008	Bottom	L	8	0402R	CHIPRES OW06 20R J 0402	20R	~
R4400	Тор	В	22	0402R	Resistor 5% 63mW	470k	~
R4401	Тор	В	22	0402R	Resistor 5% 63mW	100k	~
R4402	Тор	В	22	0402R	Resistor 5% 63mW	470k	~
R4403	Тор	A	22	0402_NTH5	NTC RES 47K J B=4050+-3% 0402	47k	~
R4404	Bottom	I	5	0402R	Chipres 0W06 jumper 0402	OR	~
R4406	Тор	L	22	0402_VAR	CHIP VARISTOR VWM14V VC50V 0402	14V/50V	~
R4407	Bottom	D	13	0402R	Resistor 5% 63mW	18R	~
R4409	Bottom	D	13	0402R	Resistor 5% 63mW	18R	~
R4410	Bottom	D	14	0402R	Resistor 5% 63mW	1k0	~
R4412	Тор	В	22	0402R	Resistor 5% 63mW	680R	~
R4413	Тор	с	22	0402R	Chipres 0W06 jumper 0402	OR	~
R4414	Bottom	G	4	0402R	Resistor 5% 63mW	100k	~
R4423	Bottom	I	2	0805R_THER M1	CHIPRES OW125 4R7 J 0805	4R7	~

Item	Side	Grid re	ference		Description	and value	
R4430	Bottom	В	14	0402R	Resistor 5% 63mW	100k	~
R4432	Bottom	D	11	0402R	Chipres 0W06 jumper 0402	OR	~
R4438	Bottom	D	14	0402R	Resistor 5% 63mW	3k3	~
R4439	Bottom	D	14	0402R	Resistor 5% 63mW	3k3	~
R4440	Bottom	D	14	0402R	Resistor 5% 63mW	3k3	~
R4441	Bottom	н	3	0402R	Resistor 5% 63mW	82k	~
R4444	Bottom	I	5	0402R	Chipres 0W06 5% 0402	3M3	~
R4506	Bottom	В	17	0402R	Chipres 0W06 jumper 0402	OR	~
R4507	Bottom	В	17	0402R	Chipres 0W06 jumper 0402	OR	~
R4508	Bottom	В	17	0402R	Chipres 0W06 jumper 0402	OR	~
R4509	Bottom	В	16	0402R	Chipres 0W06 jumper 0402	OR	~
R5201	Bottom	м	10	0402R	Resistor 5% 63mW	100k	~
R5202	Bottom	L	10	0402R	Resistor 5% 63mW	100k	~
R5203	Bottom	м	11	0402R	Resistor 5% 63mW	100k	~
R5204	Bottom	L	11	0402R	Resistor 5% 63mW	2k2	~
R6030	Bottom	L	3	0402R	Resistor 5% 63mW	10k	~
R6031	Bottom	к	4	0402R	Resistor 5% 63mW	10k	~
R6032	Bottom	L	4	0402R	CHIPRES 0W06 2R2 J 0402	2R2	~
R6034	Bottom	к	3	0402R	Resistor 5% 63mW	10k	~
R6035	Bottom	к	4	0402R	Resistor 5% 63mW	100k	~

Item	Side	Grid re	ference		Description	and value	
R6302	Bottom	н	1	0402R	Chipres 0W06 jumper 0402	OR	~
R7501	Bottom	G	12	0402R	Resistor 5% 63mW	2k2	~
R7502	Bottom	Н	13	0402R	CHIPRES 0W06 10K F 0402	10k	~
R7503	Bottom	F	13	0402R	Resistor 5% 63mW	4k7	~
R7504	Bottom	F	12	0402R	Chipres 0W06 jumper 0402	OR	~
R7505	Bottom	G	12	0402R	CHIPRES 0W06 8K2 F 0402	8k2	~
R7506	Bottom	F	13	0402R	Resistor 5% 63mW	10R	~
R7507	Bottom	н	13	0402R	Resistor 5% 63mW	10R	~
R7508	Bottom	F	12	0402R	Resistor 5% 63mW	10R	~
R7509	Bottom	F	12	0402R	Resistor 5% 63mW	22k	~
R7510	Bottom	F	17	0402R	Resistor 5% 63mW	15R	~
R7522	Bottom	F	16	0402R	CHIPRES 0W06 27K F 0402	27k	~
R7523	Bottom	н	16	0402R	Chipres 0W06 jumper 0402	OR	~
R7586	Bottom	L	4	0402R	Resistor 5% 63mW	330R	~
R7587	Bottom	м	3	0402R	Chipres 0W06 jumper 0402	OR	~
R7588	Тор]	23	0402R	Chipres 0W06 jumper 0402	OR	~
R7590	Bottom	м	4	0402R	Resistor 5% 63mW	1k8	~
R7591	Тор]	22	0402R	Chipres 0W06 jumper 0402	OR	~
R7592	Bottom	L	4	0402R	Resistor 5% 63mW	27k	~
R7594	Bottom	м	3	0402R	Resistor 5% 63mW	1k2	~

Item	Side	Grid re	ference		Description	and value	
S4401	Тор	L	22	BUTTON_EV PAA	SWITCH PB LIGHT EVPAA 15V 20MA	~	~
T7501	Bottom	G	12	TRANS_LDB1 5	TRANSF BALUN 3800 +-550MHZ 0805	~	~
T7520	Bottom	н	17	TRANS_LDB1 5	TRANSF BALUN 1800 +-100mhz 2x1.25	~	~
V2302	Bottom	В	5	SOD323F	SCH DI 30V 2A SOD323F	~	~
V4400	Тор	В	22	PT202MR0M P	DI PHOTO PT202MR0MP 620NM 1.25X2	~	~
V4401	Bottom	I	4	SC_76	DI ZEN 100V 6% 200MW SOD323	~	~
V4402	Bottom]	4	SC_76	DI ZEN 100V 6% 200MW SOD323	~	~
V4403	Bottom	E	14	VMT3	TR 2SC5658QRS N 50V 0A1 0W15 VMT3	~	~
V4404	Bottom	н	4	SOT_666	TRX2+RX4 PEMD9 N&P 10K/47K 0W12 S0T666	~	~
V4405	Тор	В	22	LED_CL191	LED CL-191WB- D-T WHITE 0` 115MCD 0603	~	~
V4406	Тор	В	22	EM3	TR PDTC114EE N 50V RB=RBE=10K EM3	~	~
V4407	Bottom	В	14	EM3	TR PDTC114EE N 50V RB=RBE=10K EM3	~	~
V7590	Bottom	м	3	SOT323	Tr NPN 12V 35mA S0T323	~	~

Item	Side	Grid re	ference		Description	and value	
W6300	Bottom	G	1	ANT_RENM0 5041	BT/WLAN 1.0 TP ANTENNA RELEASE	~	~
X2000	Bottom	с	1	CON_JACK_H R33NK_2DJA _2S	CONN DC-JACK 2.0MM 3POL SPR 90DEG	~	~
X2001	Bottom	к	2	USB_MITSU MI_R415082	SMD CONN 5POL MINI-USB B TYPE P0.8	~	~
X2002	Bottom	E	2	JACK_T_378 840_A9	HEADSET JACK 4-POLE	~	~
X2070	Bottom	I	18	LYNX_BATT_ CONN_H7.0	SM BATTERY CONN 3POL SPR 12V 2A	~	~
X2100	Bottom	D	20	CONN_ANT_ DMD11562	CON PPP ANTENNA R1024 DMD11562	~	~
X2101	Bottom	D	20	CONN_ANT_ DMD11562	CON PPP ANTENNA R1024 DMD11562	~	~
X2701	Bottom	с	15	SIM_CONN_ M_SK_20030 0383	SM SIM CONN 2X3POL P2.54 H4.6	~	~
X4400	Тор	E	22	JST_R_JAVK_ G_1_R3	SM CONN 2X12F P0.4 30V .3A PWB/ PWB	~	~
X4500	Bottom	F	8	CONN_SD_54 742_002	SM LCD CONN 1X8 P2.0 SPR 50V 0.5A	~	~
X4501	Bottom	В	17	SMK_4309_B _B_6P_V2	SM CONN 6P SPR P1.3 50V BTOB	~	~
X5200	Bottom	к	15	MINISD_SC1 S011V1S3	CONN MINISD PUSH-PUSH 3.3V 0.5A	~	~
X7504	Bottom	м	23	SPRING_WN 9149_N10	C-SPRING ANTENNA active	~	~
X7505	Bottom	L	23	SPRING_WN 9149_N10	C-SPRING ANTENNA active	~	~

Item	Side	Grid re	ference		Description	and value	
X7507	Bottom	J	23	SPRING_WN 9149_N10	C-SPRING ANTENNA active	~	~
Z2001	Bottom	I	3	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~
Z2002	Bottom	н	3	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~
Z2003	Bottom	F	3	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~
Z2004	Bottom	F	3	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~
Z2005	Bottom	E	3	FERRITE_04 02	FERRITE BEAD 0.6R 600R/ 100MHZ 0402	600R/ 100MHz	~
Z4402	Тор	В	23	uBGA25_2.4 7X2.47	ASIP 10-CH ESD EMI FILTER BGA25	~	~
Z4403	Тор	с	23	uBGA25_2.4 7X2.47	ASIP 10-CH ESD EMI FILTER BGA25	~	~
Z4500	Bottom	В	13	uBGA24_2.6 2X2.62	ASIP EMIF10-1K010 F2 **PB- FREE**	~	~
Z4501	Bottom	D	12	uBGA24_2.6 2X2.62	ASIP EMIF10-1K010 F2 **PB- FREE**	~	~
Z5200	Bottom	м	12	uBGA11_1.6 2X2.12	ASIP EMIF04- MMC02F2**PB -FREE**	~	~
Z6030	Bottom	К	4	EZFVQ42NM 61S	LTCC FILT 2441.75 +-41.75MHZ 2.5X2	2441.75MH z	~
Z7501	Bottom	G	15	FILTER_2.1X 1.7_10P_H0. 6	SAW FILT 1842.5/1960M HZ 2.0X1.6MM	1842.5/196 0MHZ	~

Item	Side	Grid ref	ference		Description	and value	
Z7503	Bottom	F	15	MODULE_LM SM43AA_34 1	TX SAW MODULE GSM 850/900MHZ 4.5X3.2	850/900MH z	۲
Z7504	Bottom	G	15	FILTER_2.1X 1.7_10P_H0. 65	DUAL RX SAW FILTER 850/900MHZ 2016	850/900MH z	~
Z7520	Bottom	Н	16	FERRITE_FB MJ1608	FERRITE BEAD ORO1 28R/ 100MHZ 0603	28R/ 100MHz	~

Component layouts

Components overview

E62 RM-88 Components overview

ENGINE MODULE TOP

ENGINE MODULE BOTTOM

Component layout - bottom (1qr_10a_asmdrw_b)

Component layout - top (1qr_10a_asmdrw_t)

Nokia Customer Care

3 — Service Software Instructions

(This page left intentionally blank.)

Table of Contents

Phoenix installation steps in brief	3–5
Installing Phoenix	3-6
Updating Phoenix installation	3-8
Uninstalling Phoenix	3–9
Repairing Phoenix installation	3-11
Phone data package overview	3-11
Installing phone data package	3-12
Uninstalling phone data package	3-15
Configuring users in Phoenix	3-17
Managing connections in Phoenix	3-17
Installing flash support files for FPS-10	
Updating FPS-10 flash prommer software	3-22

List of Figures

Figure 4 Disclaimer text	Figure 3 Dongle not found	3-6
Figure 5 InstallShield Wizard Complete.3–8Figure 6 Installation interrupted.3–9Figure 7 Remove program.3–10Figure 7 Remove program.3–10Figure 8 Finish uninstallation.3–10Figure 9 Repair program.3–11Figure 10 Data package setup information.3–13Figure 11 Data package destination folder.3–14Figure 12 InstallShield Wizard Complete.3–15Figure 13 Uninstalling phone data package.3–16Figure 14 Finishing data package uninstallation.3–16Figure 15 Phoenix login.3–17Figure 16 New user configured.3–17Figure 17 Select mode: Manual.3–18Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–22Figure 26 Prommer SW update finished.3–22Figure 27 Prommer SW update finished.3–22Figure 26 Prommer SW update finished.3–22Figure 27 Prommer SW update finished.3–22Figure 26 Prommer SW update finished.3–22Figure 27 Prommer SW update finished.3–22Figure 26 Prommer SW update finished.3–22Figure 27 Prommer SW update finished.3–22Figure 26 Prommer SW update finished.3–23	Figure 4 Disclaimer text	3–7
Figure 6 Installation interrupted.3–9Figure 7 Remove program.3–10Figure 8 Finish uninstallation.3–10Figure 9 Repair program.3–11Figure 10 Data package setup information.3–13Figure 11 Data package destination folder.3–14Figure 12 InstallShield Wizard Complete.3–15Figure 13 Uninstalling phone data package.3–16Figure 14 Finishing data package uninstallation.3–16Figure 15 Phoenix login.3–17Figure 16 New user configured.3–18Figure 17 Select mode: Manual.3–19Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 23 Flash destination folder.3–22Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–22Figure 26 Prommer SW update finished.3–22Figure 27 Prommer SW update finished.3–22Figure 26 Prommer SW update finished.3–22Figure 25 Prommer SW update finished.3–22Figure 26 Prommer SW update finished.3–22Figure 27 Prommer SW update finished.3–22Figure 26 Prommer SW update finished.3–22Figure 27 Prommer SW update finished.3–22Figure 26 Prommer SW update finished.3–23	Figure 5 InstallShield Wizard Complete	3-8
Figure 7 Remove program.3–10Figure 8 Finish uninstallation.3–10Figure 9 Repair program.3–11Figure 10 Data package setup information.3–13Figure 11 Data package destination folder.3–14Figure 12 InstallShield Wizard Complete.3–15Figure 13 Uninstalling phone data package.3–16Figure 14 Finishing data package uninstallation.3–16Figure 15 Phoenix login.3–17Figure 16 New user configured.3–17Figure 17 Select mode: Manual.3–18Figure 18 Connections list.3–19Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 22 Flash installation interrupted.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–23Figure 25 Prommer SW update finished.3–23	Figure 6 Installation interrupted	3–9
Figure 8 Finish uninstallation.3–10Figure 9 Repair program.3–11Figure 10 Data package setup information.3–13Figure 11 Data package destination folder.3–14Figure 12 InstallShield Wizard Complete.3–15Figure 13 Uninstalling phone data package.3–16Figure 14 Finishing data package uninstallation.3–16Figure 15 Phoenix login.3–17Figure 16 New user configured.3–17Figure 17 Select mode: Manual.3–18Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 22 Flash installation interrupted.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash supdate.3–21Figure 25 Prommer SW update.3–22Figure 26 Prommer SW update.3–22Figure 27 Flash flash supdate.3–22Figure 28 Flash destination folder.3–22Figure 25 Prommer SW update.3–22Figure 26 Prommer SW update.3–22Figure 27 Prommer SW update.3–22Figure 28 Prommer SW update.3–22Figure 25 Prommer SW update.3–22Figure 26 Prommer SW update.3–22Figure 27 Prommer SW update.3–23Figure 28 Prommer SW update.3–23Figure 29 Prommer SW update.3–23Figure 26 Prommer SW update.3–23Figure 27 Prommer SW update.3–23Figure 28 Prommer SW update.3–23Figure 26 Prommer SW update.3–23 <td>Figure 7 Remove program</td> <td>3–10</td>	Figure 7 Remove program	3–10
Figure 9 Repair program.3–11Figure 10 Data package setup information.3–13Figure 11 Data package destination folder.3–14Figure 12 InstallShield Wizard Complete.3–15Figure 13 Uninstalling phone data package.3–16Figure 14 Finishing data package uninstallation.3–16Figure 15 Phoenix login.3–17Figure 16 New user configured.3–17Figure 17 Select mode: Manual.3–18Figure 19 Connection list.3–19Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–22Figure 25 Prommer SW update finished.3–22Figure 25 Prommer SW update finished.3–23Figure 26 Prommer SW update finished.3–23<	Figure 8 Finish uninstallation	3–10
Figure 10 Data package setup information3–13Figure 11 Data package destination folder3–14Figure 12 InstallShield Wizard Complete3–15Figure 13 Uninstalling phone data package3–16Figure 14 Finishing data package uninstallation3–16Figure 15 Phoenix login3–17Figure 16 New user configured3–17Figure 17 Select mode: Manual3–18Figure 18 Connections list3–19Figure 20 Product support module information (example from RM-1)3–19Figure 21 Flash update welcome dialog3–20Figure 23 Flash destination folder3–21Figure 24 Finish flash update3–22Figure 25 Prommer SW update finished3–23Figure 25 Prommer SW update finished3–23	Figure 9 Repair program	3-11
Figure 11 Data package destination folder.3–14Figure 12 InstallShield Wizard Complete.3–15Figure 13 Uninstalling phone data package.3–16Figure 14 Finishing data package uninstallation.3–16Figure 15 Phoenix login.3–17Figure 16 New user configured.3–17Figure 17 Select mode: Manual.3–18Figure 18 Connections list.3–19Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–23Figure 25 Prommer SW update finished.3–23	Figure 10 Data package setup information	3–13
Figure 12 InstallShield Wizard Complete.3–15Figure 13 Uninstalling phone data package.3–16Figure 14 Finishing data package uninstallation.3–16Figure 15 Phoenix login.3–17Figure 16 New user configured.3–17Figure 17 Select mode: Manual.3–18Figure 18 Connections list.3–19Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–23Figure 25 Prommer SW update finished.3–23	Figure 11 Data package destination folder	3–14
Figure 13 Uninstalling phone data package.3–16Figure 14 Finishing data package uninstallation.3–16Figure 15 Phoenix login.3–17Figure 16 New user configured.3–17Figure 17 Select mode: Manual.3–18Figure 18 Connections list.3–19Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–23A.3–23	Figure 12 InstallShield Wizard Complete	3–15
Figure 14 Finishing data package uninstallation.3–16Figure 15 Phoenix login.3–17Figure 16 New user configured.3–17Figure 17 Select mode: Manual.3–18Figure 18 Connections list.3–19Figure 19 Connection information.3–19Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–23Figure 26 Destination contaction in the standard finished.3–23	Figure 13 Uninstalling phone data package	3–16
Figure 15 Phoenix login.3–17Figure 16 New user configured.3–17Figure 17 Select mode: Manual.3–18Figure 17 Select mode: Ist.3–19Figure 18 Connections list.3–19Figure 19 Connection information.3–19Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 22 Flash installation interrupted.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–23Figure 26 Deserver meinterence window3–23	Figure 14 Finishing data package uninstallation	3–16
Figure 16 New user configured.3–17Figure 17 Select mode: Manual.3–18Figure 18 Connections list.3–19Figure 19 Connection information.3–19Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 22 Flash installation interrupted.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–23Figure 26 Prommer SW update finished.3–23	Figure 15 Phoenix login	3-17
Figure 17 Select mode: Manual.3–18Figure 18 Connections list.3–19Figure 19 Connection information.3–19Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 22 Flash installation interrupted.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–23Figure 26 Prommer SW update finished.3–23	Figure 16 New user configured	3-17
Figure 18 Connections list.3–19Figure 19 Connection information.3–19Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 22 Flash installation interrupted.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–23Figure 26 Prommer SW update finished.3–23	Figure 17 Select mode: Manual	3–18
Figure 19 Connection information.3–19Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 22 Flash installation interrupted.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–23Figure 26 Prommer SW update finished.3–23	Figure 18 Connections list	3–19
Figure 20 Product support module information (example from RM-1).3–19Figure 21 Flash update welcome dialog.3–20Figure 22 Flash installation interrupted.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–23Server 26 Prommer SW update finished.3–23	Figure 19 Connection information	3–19
Figure 21 Flash update welcome dialog.3–20Figure 22 Flash installation interrupted.3–20Figure 23 Flash destination folder.3–21Figure 24 Finish flash update.3–22Figure 25 Prommer SW update finished.3–23Server 26 Prommer SW update finished.3–23	Figure 20 Product support module information (example from RM-1)	3–19
Figure 22 Flash installation interrupted. 3–20 Figure 23 Flash destination folder. 3–21 Figure 24 Finish flash update. 3–22 Figure 25 Prommer SW update finished. 3–23 Sigure 26 Drommer SW update finished. 3–23	Figure 21 Flash update welcome dialog	3–20
Figure 23 Flash destination folder	Figure 22 Flash installation interrupted	3–20
Figure 24 Finish flash update	Figure 23 Flash destination folder	3-21
Figure 25 Prommer SW update finished	Figure 24 Finish flash update	3-22
Figure 20 Prommer maintenance window	Figure 25 Prommer SW update finished	3–23
Figure 26 Prominer maintenance window	Figure 26 Prommer maintenance window	3-23
Figure 27 Flash directory window3–24	Figure 27 Flash directory window	3–24

(This page left intentionally blank.)

Phoenix installation steps in brief

Prerequisites

Recommended hardware requirements:

- Computer processor: Pentium 700 MHz or higher
- RAM 256 MB
- Disk space 100-300 MB

Supported operating systems:

- *Windows 2000* Service Pack 3 or higher
- Windows XP Service Pack 1 or higher

Context

Phoenix is a service software for reprogramming, testing and tuning phones.

Phoenix installation contains:

- Service software support for all phone models included in the package
- Flash update package files for programming devices
- All needed drivers for:
 - PKD-1 (DK2) dongle
 - DKE-2 USB cable

Note: Separate installation packages for flash update files and drivers are also available, but it is not necessary to use them unless there are updates between *Phoenix* service software releases. If separate update packages are used, they should be used after *Phoenix* and data packages have been installed.

The phone model specific data package includes all changing product specific data:

- Product software binary files
- Files for type label printing
- Validation file for the faultlog repair data reporting system
- All product specific configuration files for *Phoenix* software components

Note: *Phoenix* and phone data packages should only be used as complete installation packages. Uninstallation should be made from the *Windows* Control Panel.

To use *Phoenix*, you need to:

Steps

- 1. Connect a PKD-1 (DK2) dongle to the computer parallel port.
- 2. Install *Phoenix*.
- 3. Install the phone-specific data package.
- 4. Configure users.
- 5. Manage connection settings (depends on the tools you are using).
 - Update FPS-10 software
 - Note: There is no need to activate FPS-10.
 - Activate SX-4 smart card, if you need tuning and testing functions.

Note: When FPS-10 is used only for product software updates, SX-4 smart card is not needed.

Results

Phoenix is ready to be used with FPS-10 flash prommer and other service tools.

Installing *Phoenix*

Prerequisites

- Check that a dongle is attached to the parallel port of your computer.
- Download the *Phoenix* installation package (for example, *phoenix_service_sw_2004_39_x_xx.exe*) to your computer (in *C:*|*TEMP*, for instance).
- Close all other programs.
- Depending on your operating system, administrator rights may be required to install *Phoenix*.
- If uninstalling or rebooting is needed at any point, you will be prompted by the InstallShield program.

Context

At some point during the installation procedure, you may get the following message:

Dongle n	ot found
٩	Installation cannot continue without a dongle. Insert Nokia dongle and click Retry to re-detect the dongle or click Cancel to exit the installation.
	Retry Cancel

Figure 3 Dongle not found

This may be a result of a defective or too old PKD-1 dongle.

Check the COM/parallel ports used. After correcting the problem, you can restart the installation.

For more detailed information, please refer to *Phoenix* Help files.

Tip: Each feature in *Phoenix* has its own Help function, which can be activated while running the program. Press the **F1** key or the feature's **Help** button to activate a Help file.

Steps

- 1. To start the installation, run the application file (for example, *phoenix_service_sw_2004_39_x_xx.exe*).
- 2. In the *Welcome* dialogue, click **Next**.

3. Read the disclaimer text carefully and click Yes.

Figure 4 Disclaimer text

4. Choose the destination folder.

The default folder *C: ProgramFiles Nokia Phoenix* is recommended.

5. To continue, click **Next.**

To choose another location, click **Browse** (not recommended).

6. Wait for the components to be copied.

The progress of the installation is shown in the *Setup Status* window.

7. Wait for the drivers to be installed and updated.

The process may take several minutes to complete.

If the operating system does not require rebooting, the PC components are registered right away. If the operating system requires restarting your computer, the Install Shield Wizard will notifies about it. Select **Yes...** to reboot the PC immediately or **No...** to reboot the PC manually afterwards. After the reboot, all components are registered.

Note: *Phoenix* does not work, if the components have not been registered.

8. To end the installation, click **Finish**.

Phoenix Service Software Setu	p
M	InstallShield Wizard Complete
	The InstallShield Wizard has auccessfully installed Phoenix Service Software A. Click Finish to exit the wizard.
	Add Phoenix icon to Desktop.
InstallShield	< Back Finish Cancel

Figure 5 InstallShield Wizard Complete

Next actions

After the installation, *Phoenix* can be used after:

- installing phone model specific data package for *Phoenix*
- configuring users and connections

FPS-10 flash prommer can be used after updating their flash update package files.

Updating *Phoenix* installation

Context

- If you already have the *Phoenix* service software installed on your computer, you need to update the software when new versions are released.
- To update *Phoenix*, you need to follow the same steps as when installing it for the first time.
- When you are updating, for example, from version **a14_2004_16_4_47** to **a15_2004_24_7_55**, the update will take place automatically without uninstallation.
- Always use the latest available versions of both *Phoenix* and the phone-specific data package. Instructions can be found in the phone model specific Technical Bulletins and phone data package *readme.txt* files (shown during installation).
- If you try to update *Phoenix* with the same version you already have (for example, **a15_2004_24_7_55** to **a15_2004_24_7_55**), you are asked if you want to uninstall the existing version. In this case you can choose between a total uninstallation or a repair installation in a similar way when choosing to uninstall the application from the *Windows* Control Panel.
- If you try to install an older version (for example, downgrade from **a15_2004_24_7_55** to **a14_2004_16_4_47**), installation will be interrupted.

Figure 6 Installation interrupted

• Always follow the instructions on the screen.

Steps

- 1. Download the installation package to your computer hard disk.
- 2. Close all other programs.
- 3. Run the application file (for example, *phoenix_service_sw_2004_39_x_xx.exe*).

Results

A new *Phoenix* version is installed and driver versions are checked and updated.

Uninstalling *Phoenix*

Context

You can uninstall *Phoenix* service software manually from the *Windows* Control Panel.

Steps

1. Open the Windows Control Panel, and choose Add/Remove Programs.

2. To uninstall *Phoenix*, choose **Phoenix Service Software**→**Change/Remove**→**Remove**.

Figure 7 Remove program

The progress of the uninstallation is shown.

3. If the operating system does not require rebooting, click **Finish** to complete.

Figure 8 Finish uninstallation

If the operating system requires rebooting, InstallShield Wizard will notify you. Select **Yes...** to reboot the PC immediately and **No...** to reboot the PC manually afterwards.

Repairing *Phoenix* installation

Context

If you experience any problems with the service software or suspect that files have been lost, use the repair function before completely reinstalling *Phoenix*.

Note: The original installation package (for example, *phoenix_service_sw_a15_2004_24_7_55.exe*) must be found on your PC when you run the repair setup.

Steps

- 1. Open Windows Control Panel → Add/Remove Programs .
- 2. Choose Phoenix Service Software → Change/Remove.
- 3. In the following view, select **Repair**.

Figure 9 Repair program

Phoenix reinstalls components and registers them.

The procedure is the same as when updating *Phoenix*.

4. To complete the repair, click **Finish**.

Phone data package overview

Each product has its own data package (DP). The product data package contains all product-specific data files to make the Phoenix service software and tools usable with a certain phone model.

The phone data package contains the following:

• Product software binary files

- Files for type label printing
- Validation file for the fault log repair data reporting system
- All product-specific configuration files for Phoenix software components

Data files are stored in C:\Program Files\Nokia\Phoenix (default).

Installing phone data package

Prerequisites

- A phone-specific data package contains all data required for the *Phoenix* service software and service tools to be used with a certain phone model.
- Check that a dongle is attached to the parallel port of your computer.
- Install *Phoenix* service software.
- Download the installation package (for example, *XX-XX_dp_EA_v_1_0.exe*) to your computer (for example, in C:\TEMP).
- Close all other programs.

(XX-XX = type designator of the product)

If you already have *Phoenix* installed on your computer, you will need to update it when a new version is released.

Note: Often *Phoenix* and the phone-specific data package come in pairs, meaning that a certain version of *Phoenix* can only be used with a certain version of a data package. Always use the latest available versions of both. Instructions can be found in phone-specific Technical Bulletins and *readme.txt* files of data packages.

Steps

1. To start the installation, run the application file (for example, *XX-XX_dp_EA_v_1_0.exe*), Wait for the installation files to be extracted.

2. Click **Next**.

Phone Data Package Setup		×
	Welcome to the InstallShield Wizard for Phone Data Package The InstallShield® Wizard x.x will update xx-xx Phone Data Package to version x.x. To continue, click Next.	
	< Back Next > Cancel	

3. In the following view you can see the contents of the data package. Read the text carefully. There is information about the *Phoenix* version required with this data package.

nformation	A series of
Please read the following text.	
To start installing the files, click Ne	əvət.
Phone Data Fackage xx x	Installation (mcusw 3.42 Customer Care/Production)
Note !! VERY IMPORTANT:	
You need to uninstall th before installing this ver It will NOT work correct	e previous version of the data package sion. tly if this step is skipped.
Close Phoenix before starting insta	allation of the Data Package.
Note! Phoenix release A 200xx x	xx or newer is required! earlier versions may work
allShield	

Figure 10 Data package setup information

4. To continue, click **Next**.

5. Choose the destination folder, and click **Next** to continue.

Phone Data Package Setup		×
Choose Destination Location Select folder where setup will install files.		AL.
Setup will install xx-xx Phone Data Packag	ge in the following folder.	
To install to this folder, click Next. To insta another folder.	ll to a different folder, click Bro	wse and select
Destination Folder C:\Program Files\Nokia\Phoenix		Browse
InstallShield		
	< Back Next	Cancel

Figure 11 Data package destination folder

The InstallShield Wizard checks where *Phoenix* is installed, and the directory is shown.

6. To start copying the files, click **Next**.

Phone Data Package Setup			×
Start Copying Files			X
To star: installing the files, click Next.			
Current Settings:			
Installation path: C:\Program Files\Nokia\F	Phoenix		<u>^</u>
			<u> </u>
4			<u>}</u>
nstallShield			
	< Back	Next >	Cancel

Phone model specific files are installed. Please wait.

7. To complete the installation, click **Finish**.

Phone Data Package Setup	
	InstallShield Wizard Complete The InstallShield Wizard has successfully installed xx-xx Phone Data Package. Click Finish to exit the wizard.
	< Back Finish Canool

Figure 12 InstallShield Wizard Complete

Next actions

Phoenix can be used for flashing phones and printing type labels after:

- Configuring users
- Managing connections

FPS-10 can be used after updating their flash update package files.

Uninstalling phone data package

Context

There is no need to uninstall an older version of a data package, unless instructions to do so are given in the *readme.txt* file of the data package and bulletins related to the release.

Please read all related documents carefully.

Steps

- 1. Locate the data package installation file (e.g. *XX-XX_dp_EA_v_1_0.exe*) from your computer.
- 2. To start the uninstallation procedure, double-click the data package installation file.

3. To uninstall the data package, click **OK** or to interrupt the uninstallation, click **Cancel**.

Figure 13 Uninstalling phone data package

4. When the data package is uninstalled, click **Finish**.

Phone Data Package Setup	
	Uninstallation complete InstallShield Wizard has completed the uninstallation of xx-xx Phone Data Package. Click Finish to exit the wizard.
	< Back Finish Canool

Figure 14 Finishing data package uninstallation

Alternative steps

 You can also uninstall the data package manually from Control Panel→Add/Remove Programs→xx-xx* Phone Data Package . (*= type designator of the phone).

Configuring users in *Phoenix*

Steps

1. Start *Phoenix* service software, and log in.

gin			?
User			
User name:			
TU (Test User)			-
		L	Maintain
	01.		
	UK	Lancel	Help

Figure 15 Phoenix login

If the user ID is already configured, select s/he from the *User name* drop-down list, and click **OK**.

- 2. To add a new user, or to edit existing ones, click **Maintain**.
- 3. To add a new user, click **New**.
- 4. Type in the name and initials of the user, and click **OK**. The user is added to the user name list.
- 5. Select the desired user from the *User name* drop-down list, and click **OK**.

gin Lleer			?
User name:	-ahniaian)		-
	scrinicianj		Maintain
	Ok	Cancel	Help

Figure 16 New user configured

Managing connections in *Phoenix*

Context

With the **Manage Connections** feature you can edit and delete existing connections or create new ones.

Note: After choosing the desired connection, and connecting the phone to a PC for the first time, allow the PC to install the USB device drivers first. Please note that this may take some time to complete.

If there are problems after the driver installation, check that the USB connection is active from the **Windows Control Panel**. If the problem persists, contact the local PC support.

Steps

- 1. Start *Phoenix*, and log in.
- 2. Choose File \rightarrow Manage Connections....

3. To add a new connection, click **Add**.

NO CONNECT	ION	al. maar maar		^
				-1

4. Select **Manual** mode, and click **Next** to continue.

If you want to create the connection using the Connection Wizard, connect the tools and a phone to your PC. The wizard will automatically try to configure the correct connection.

C Mr. I				
Wizard Manual				
wizard installed y else you have to	you can use it t o use manual m	o add a connecti ode.	on,	

Figure 17 Select mode: Manual

- i For an FPS-10 flash prommer with a **USB Connection**, choose the following connection settings:
 - Media: FPS-10 USB
 - DEVICE_INDEX: 0
 - SERIAL_NUM: See Serial No from the label attached to the bottom of FPS-10
 - ACTIVE_MEDIA: USB

ii For an FPS-10 flash prommer with a **LAN connection**, choose the following connection settings:

- Media: FPS-10 TCP/IP
- NET_SERV_NAME: Click **Scan...**. Choose your own FPS-10 device based on the correct MAC address. See Serial No from the label attached to the bottom of your FPS-10.
- PORT_NUM: Use the default value, and click **Next**.
- PROTOCOL_FAMILY: Use the default value, and click **Next**.
- SOCKET TYPE: Use the default value, and click **Next**.
- TX_BUFFER_SIZE: Use the default value, and click **Next**.
- RX_BUFFER_SIZE: Use the default value, and click **Next**.
- iii For an FPS-8 flash prommer, choose the following connection settings:
 - Media: FPS-8
 - PORT_NUM: COM Port where FPS-8 is connected
 - COMBOX_DEF_MEDIA: FBUS

- iv For a plain **USB connection**, choose the following connection settings:
 - **Note:** First connect the DKE-2 USB cable between the PC USB port and phone.
 - Media: USB
- 5. To complete the configuration, click **Finish**.
- 6. Click the connection you want to activate. Use the up/down arrows located on the right hand side to move it on top of the list, then click **Apply**.

USB			<u>^</u>
FPS-10 TCP (1) FPS-10 USB (U NO CONNECTI	0.164.165.75) SB) ON		▲ ▼
			- I

Figure 18 Connections list

The connection is activated, and it can be used after closing the *Manage Connection* window. The connection information is shown at the right hand bottom corner of the screen.

Figure 19 Connection information

7. To use the connection, connect the phone to your PC with correct service tools. Make sure the phone is switched on, and then choose **File**→**Scan Product**.

Results

The product support module information appears in the status bar:

V 2.0436v19.1, 18-10-04, RM-1, (c) NOKIA. / V 2.39.126, 18-10-04, RM-1, (c)

Figure 20 Product support module information (example from RM-1)

Installing flash support files for FPS-10

Prerequisites

Note: You need to install flash support files for FPS-10 only, if you don't have the latest Phoenix available or the flash support files have changed after the latest Phoenix release.

- Flash support files are installed automatically, when you install Phoenix. Use Phoenix packages later than June 2006.
- Normally it is enough to install Phoenix and the phone-specific data package because the Phoenix installation always includes the latest flash update package files for FPS-10.
- A separate installation package for flash support files is available, and the files can be updated according to this instruction, if updates appear between new Phoenix / data package releases

Context

If you are not using a separate installation package, you can skip this section and continue with [[[ERROR: Unable to generate link title]]] (page) after installing a new phone data package.

Steps

1. To begin installation, double- click *flash_update_x_yy.exe*.

Figure 21 Flash update welcome dialog

If the same version of Flash Update package already exists, and you want to reinstall it, the previous package is first uninstalled. Restart installation again after that.

2. If you try to downgrade the existing version to older ones, the setup will be aborted. If you really want to downgrade, uninstall newer files manually from **Control Panel** and then rerun the installation again.

-	You have never vertice 02.10.004 of the application
\mathbf{x}	If you want to install other version 03.18.003 you need to
-	uninstall the current version before.
	Setup will exit.
	UK

Figure 22 Flash installation interrupted

If an older version exists on your PC and it needs to be updated, click **Next** to continue installation.
3. It is highly recommended to install the files to the default destination folder *C:*|*Program Files*|*Nokia* |*Phoenix*. Click **Next** to continue.

Flash Update - InstallShield Wi	zard	×
Choose Destination Location Select folder where setup will in	n stall files.	
	Setup will install Flash Update 03.18.004 in the following folder.	
	To install to this folder, click Next. To install to a different folder, click Browse and select another folder.	
	Destination Folder- C:\Program Files\Nokia\Phoenix Browse]
InstallShield	< <u>B</u> ack <u>Next</u> > Cancel	

Figure 23 Flash destination folder

When installing the flash update files for the first time you may choose another location by selecting **Browse**. However, this is not recommended.

4. To complete the installation procedure, click Finish .

Flash Update - InstallShield Wiza	rd
	InstallShield Wizard Complete
	The InstallShield Wizard has successfully installed Flash Update 0318.004. Click Finish to exit the wizard.
InstallShield	K Back Finish Cancel

Figure 24 Finish flash update

Next actions

FPS-10 flash prommers must be updated using Phoenix!

Updating FPS-10 flash prommer software

Steps

- 1. Start *Phoenix Service Software* and log in, manage connection correctly for your flash prommer.
- 2. Choose **Flashing**→**Prommer maintenance**.
- 3. When the new flash update package is installed to the computer you will be asked to update the files to your Prommer. To update the files, click **Yes**. Click **OK** if the computer informs you about an unsafe removal of the device.
- 4. Alternatively you can update the FPS-10 flash prommer software by clicking the **Update** button.

5. Wait until you are notified that update has been successful; the procedure will take a couple of minutes. Click **OK** to close the *Update Done* window.

🐮 🖪 Updal	te Done	×
	Prommer SW updated succesfully.	
	СК	

Figure 25 Prommer SW update finished

- 6. If you are using the FPS-10 flash prommer, check that it is detected from the progress info. Check also the status leds in the FPS-10. The MODE2 led (green), VBAT and POWER leds (red) should be lit. If you are using LAN connection, the LAN led (yellow) should be blinking.
- 7. Check that your FPS-10 flash prommer has enough memory. Flashing the RM-88 with FPS-10 needs at least 128 MB of SRAM memory in the prommer.

7N	00E0031329BC	File name	Type	File ID	Version	Size	
		h3 sam nand gbbm.fg	Algo	1	001.018.000		
łw.	9	h3 sam nand xsr.fg	Algo	2	001.018.000		
1.111	10000004	h3_sam_nand_xsr_sm	Algo	3	001.017.000		
lash Size	124386304	RAP3Gv3_algo.fg	Algo	4	001.008.001		
ere Elech (h)	118469632	te_essr.fia	Algo	5	004.043.000		1
ree Flash (D)	1110405052	te_amd.fia	Algo	6	004.043.000		
BAM Size	134217728	te_amd_b.fia	Algo	7	004.043.000		
1	1	t2_amd.fia	Algo	8	004.043.000		
ree SRAM (b)	117649408	t2_amd_b.fia	Algo	9	004.043.000		
		w3_amd.fia	Algo	10	004.043.000		
oot SW	V B1.7.0 16-05-2	s3_amd_b.fia	Algo	11	004.043.000		
	NO1 70 10050	w2_amd.fia	Algo	12	004.043.000		
PGA	V C1.7.0 16-05-2	s2_amd_b.fia	Algo	13	004.043.000		
F 11 004	VA170 10052	w3_amd_b.fia	Algo	14	004.043.000		
pplication SW	IV M1.7.0 10-03-2	w2_amd_b.fia	Algo	15	004.043.000		
elftest Status	TEST OK	te_intel.fia	Algo	16 17	004.043.000		
.	0000						
rogress Info							
Finishing file up	load 0%						1
File upload finis	hed 100%						-
Prommer updat	ed successfully. Time ta	iken: 2 min 55 sec					
Initializing							
FPS10 detecte	d based on connection	settings					

Figure 26 Prommer maintenance window

Alternative steps

• You can update FPS-10 SW by clicking the **Update** button and selecting the appropriate fpsxupd.ini file in *C:*|*Program Files*|*Nokia*|*Phoenix*|*Flash*.

Open					? ×
Look in:	🔁 Flash		•	🗢 🗈 💣 📰 •	
History Desktop My Computer	103.09.002 3.09.002 8 fps8upd.ini 8 fpssupd.ini				
	File name:	fps8upd.ini		•	Open
	Files of type:	Ini files (*.ini)		•	Cancel

Figure 27 Flash directory window

• All files can be loaded separately to the prommer used. To do this, click the right mouse button in the *Flash box files* window and select the file type to be loaded.

More information can be found in Phoenix **Help**.

Nokia Customer Care

4 — Service Tools and Service Concepts

(This page left intentionally blank.)

Table of Contents

Service tools	4–5
AC-34	
(A-31D	
CA-56RS	4-5
CII-4	4-6
DKF-2	л_7
FI S-4S	4–7
FPS-10	
FS-5	
MI-67	4-8
RI-86	
SA-82	
SRT-6	
SS-46	
SS-62	
SS-76	
Service concepts	
Flash concept with FPS-10	
MI-67 module jig concept	
POS (Point of Sale) flash concept	
Service concept for RF testing and RF/BB tuning	
CU-4 flash concept with FPS-10.	
RF testing and BB testing/tuning	

List of Tables

Table 7 Attenuation table for MJ-67	4-8
Table 8 Attenuation table for antenna coupler SA-82	4-9

List of Figures

Figure 28 Basic flash concept with FPS-10	4-11
Figure 29 MI-67 module jig service concept	4-12
Figure 30 POS flash concept	4–13
Figure 31 Service concept for RF testing and RF/BB tuning	4-14
Figure 32 CU-4 flash concept with FPS-10	
Figure 33 RF testing concept and BB testing/tuning	4–16

(This page left intentionally blank.)

Service tools

The table below gives a short overview of service tools that can be used for testing, error analysis and repair of product RM-88, refer to various concepts.

	AC-34	Universal power supply			
	Universal power supply				
	CA-31D	USB cable			
	The CA-31D USB cable is used to connect FPS-10 or FPS-11 to a PC. It is included in the FPS-10 and FPS-11 sales packages.				
1	CA-56RS	RF cable			
-	Small RF cable that is used for RF tuning with MJ-67 module jig.				

Copyright © 2006 Nokia. All rights reserved.

DKE-2	Mini-USB cable	
USB to mini-USB conne	ctor cable.	
FLS-4S	Flash device	
FLS-4S is a dongle and developed specifically	flash device incorporate for POS use.	ed into one package,
FPS-10	Flash prommer	
 FPS-10 interfaces with PC Control unit Flash adapter Smart card FPS-10 flash prommer Flash functionality f Smart Card reader fe USB traffic forwardi USB to FBUS/Flashbu LAN to FBUS/Flashbu Vusb output switcha FPS-10 sales package if FPS-10 prommer Power Supply with 5 	features: or BB5 and DCT-4 termin or SX-2 or SX-4 ng us conversion us and USB conversion able by PC command ncludes: 5 country specific cords	nals

	FS-5	Product spec adapter	cific	
	RM-88/RM-89 specific	adapter.		
	MJ-67	Module jig		
	RM-88/RM-89 specific	module jig.		
	•	able 7 Attenuatio	on table for N	MJ-67
	System	Channel	Tx/Rx-at	t. (dB)
	GSM 850	128	0.2	2
		190	0.1	
		251	0.1	
	GSM 900	975	0.1	
N.O		38	0.1	L
		124	0.2	2
	GSM 1800	512	0.3	3
		698	0.2	2
		885	0.1	<u> </u>
	GSM 1900	512	0.5	
		700	0.6	5
		810	0.8	}
	Measured with Univers	al Radio Communi	ication Tester	CMU-200.
	Note: Tx-att	enuation tolera	nce is +/- 0).5dB
	Rx-attenuati	on tolerance is	+/- 1.0 dB	
	RJ-86	Soldering jig	J	
5	RM-88/RM-89 specific	soldering jig.		

	SA-82	Flash adapte antenna cou	er pler		
	 RM-88/RM-89 specific flash adapter antenna coupler. Flash adapter antenna coupler SA-82 attenuation table for NOKIA E62, measured with Universal Radio Communication Tester CMU-200. 				
See and	Table 8 Attenuation table for antenna coupler SA-82				
	System	Channel	Tx-att. (dB)	Rx-att. (dB)	
-	GSM 850	128	5.8	4	
		190	5.3	3	
		251	5.3	3	
	GSM 900	975	5.8	4	
		38	5	4	
		124	5	4	
	GSM 1800	512	7.7	6	
		698	7.4	6	
		885	7.2	5	
	GSM 1900	512	7.9	6	
		700	6.2	6	
		810	5.6	6	
	<mark>Note:</mark> Tx-a Rx-attenua	ttenuation tolera tion tolerance is	nce is +/-0.5 dE +/-1.0dB.	3.	
	SRT-6	Opening too	I		
	SRT-6 is used to ope	en phone covers	and B-to-B conr	nectors.	

	SS-46	Interface adapter		
	SS-46 acts as an interface adapter between the flash adapter and FPS-10.			
	SS-62	Generic flash adapter base for BB5		
	generic base for flash adapters and couplers			
The second secon	SS-62 equipped with a clip interlock system			
	 provides standardised interface towards Control Unit 			
-	• provides RF connection using galvanic connector or coupler			
	 multiplexing between USB and FBUS media, controlled by VUSB 			
	SS-76	Domesheet assembly jig		

Service concepts

Flash concept with FPS-10

Figure 28 Basic flash concept with FPS-10

Description	Туре
FS-5	Flash adapter
SS-46	Interface adapter
CA-35S	Power cable
XCS-4	Modular cable
	Standard USB cable
FPS-10	Flash prommer box
	Standard USB cable
PKD-1	SW security device

MJ-67 module jig concept

Figure 29 MJ-67 module jig service concept

Туре	Description
MJ-67	Module jig
CU-4	Control unit
FPS-10	Flash prommer box
SX-4	Smart card
XCS-4	Modular cable
PCS-1	DC power cable
	Standard USB cable
	Standard USB cable
	GPIB control cable
XRS-6	RF cable
PKD-1	SW security device
	RF shield box

POS (Point of Sale) flash concept

Figure 30 POS flash concept

Туре	Description
CA-53	USB connectivity cable
FLS-5	POS flash device
ACP-8	Power adapter

Service concept for RF testing and RF/BB tuning

Figure 31 Service concept for RF testing and RF/BB tuning

Description	Туре
MJ-67	Module jig
CU-4	Control unit
	Standard USB cable
PCS-1	DC power cable
	Standard USB cable + smart card reader
SX-4	Smart card
XRS-6	RF cable
	GPIB control cable
PKD-1	SW security device
	RF shield box

CU-4 flash concept with FPS-10

Figure 32 CU-4 flash concept with FPS-10

Note: FPS-8 concept can also be used for flashing.

Description	Туре
SS-62/FS-5	Flash adapter
CU-4	Control unit
XCS-4	Modular cable
PCS-1	Power cable
FPS-10	Flash prommer box
	Standard USB cable
	Standard USB cable
PKD-1	SW security device

RF testing and BB testing/tuning

Figure 33 RF testing concept and BB testing/tuning

Туре	Description
SS-62/FS-5	Flash adapter
CU-4	Control unit
SA-82	RF coupler
PCS-1	Power cable
XCS-4	Modular cable
	Standard USB cable
	Standard USB cable + smart card reader
SX-4	Smart card
	GPIB control cable
XRS-6	RF cable
PKD-1	SW security device
	RF shield box

Nokia Customer Care

5 — Disassembly / Reassembly Instructions

(This page left intentionally blank.)

Table of Contents

Disassembly instructions	5-	5
Tips for assembly	5-1	0

(This page left intentionally blank.)

Disassembly instructions

19. Use the DC plug to remove the DC-JACK.

20. Remove the MICROPHONE with tweezers. Avoid bending the spring contacts.

21. Remove the JOYSTICK MODULE.

22. Note: The JOYSTICK BUTTON ASSY is glued to the CHASSIS. Carefully, separate the parts from each other with SRT-6.

23. Remove the JOYSTICK BUTTON ASSY with tweezers.

24. Unlock the SIDE BUTTON MODULE ASSY...

Tips for assembly

1. Take special care to all spring contacts on the ENGINE MODULE when assembling the unit.

2. Always use a new screw. Tighten the Torx Plus size 4 screw to the torque of 17 Ncm.

First insert the guide pins of the ANTENNA ASSY into the recesses of the CHASSIS, then place the ANTENNA ASSY it into its socket.

4. Always use a new screw. To avoid damaging the plastic thread, first turn the screw slightly left to engage the thread and then tighten it to the torque of 22 Ncm.

Nokia Customer Care

6 — BB Troubleshooting and Manual Tuning Guide

(This page left intentionally blank.)

Table of Contents

Introduction to baseband troubleshooting	6–5
Baseband main troubleshooting	6-6
General power checking troubleshooting	6-7
Battery current measuring fault troubleshooting	6- <u>8</u>
Flash programming fault troubleshooting	6-9
Keyboard troubleshooting	6-9
USB interface troubleshooting	6–11
Charging troubleshooting	6–12
Dead or jammed troubleshooting	6–13
IrDA troubleshooting	6–14
Vibra troubleshooting	6–15
MiniSD troubleshooting	6–16
SIM troubleshooting	6–17
Display module troubleshooting	6– <u>18</u>
General instructions for display troubleshooting	6–18
Display fault troubleshooting	6–20
Display and keyboard backlight troubleshooting	6–21
EL backlight fault troubleshooting	6–24
ALS troubleshooting	6–25
LED driver troubleshooting	6–28
Bluetooth troubleshooting	6–29
Introduction to Bluetooth troubleshooting	6–29
Bluetooth settings for Phoenix	6–29
Bluetooth self tests in Phoenix	6–30
Bluetooth BER failure troubleshooting	6–32
BT audio failure troubleshooting	6–33
Audio troubleshooting	6–34
Audio troubleshooting test instructions	6–34
Internal earpiece troubleshooting	6–37
Internal microphone troubleshooting	6– <u>38</u>
IHF troubleshooting	6–39
External microphone troubleshooting	6–40
External earpiece troubleshooting	6–41
Introduction to acoustics troubleshooting	6–42
Earpiece troubleshooting	6–43
Acoustics IHF troubleshooting	6–44
Microphone troubleshooting	6–45
Baseband manual tuning guide	6–46
Energy management calibration	6-46

List of Tables

able 9 Display module troubleshooting cases	.6-18
able 10 Pixel defects	.6–19
able 11 Calibration value limits	.6-46
able 11 Calibration value limits	.6-46

List of Figures

Figure 34	Flashing pic 1.	Take single trig	measurement for	the rise of the B	SI signal	6 <u>-</u> 9
Figure 35	Flashing pic 2.	Take single trig	measurement for	the rise of the B	SI signal	6– <u>9</u>

Figure 36 Ambient Light Sensor Calibration window	.6-26
Figure 37 BER test result	6-30
Figure 38 Bluetooth self tests in Phoenix	<mark>6-31</mark>
Figure 39 Single-ended output waveform of the Ext_in_HP_out measurement when earpiece is connected	6-35
Figure 40 Differential output waveform of the Ext_in_IHF_out out loop measurement when speaker is connected	6-35
Figure 41 Single-ended output waveform of the HP_in_Ext_out loop when microphone is connected 6–36	

Introduction to baseband troubleshooting

This chapter outlines the troubleshooting process for any baseband related problems reported from our customer. All troubleshooting by service technicians will be limited to those parts that are not under any shields.

Basic Troubleshooting for RM-88

The most likely problems that may be reported with RM-88 engine are listed below.

- Phone does not power up or gets jammed during startup.
- Abnormal current consumption.
- Flashing does not work.
- Charging does not work.
- Display does not work.
- Keypad does not work.
- Display backlight does not work.
- Keyboard EL dome sheet does light up.
- Mail indicator LED does not work.
- Phone gives SIM card error.
- Phone cannot access SD card.
- USB does not work.
- Audio (earpiece, microphone, and/or IHF) does not work.
- Audio headset does not work.
- Volume key does not work.
- Bluetooth does not work.
- IRDA does not work.

Baseband main troubleshooting

Troubleshooting flow

General power checking troubleshooting

Battery current measuring fault troubleshooting

Flash programming fault troubleshooting

Troubleshooting flow

Keyboard troubleshooting

Context

There are two possible failure modes in the keyboard module:

• One or more keys can be stuck, so that the key does not react when a keydome is pressed. This kind of failure is caused by mechanical reasons (dirt, corrosion).

• Malfunction of several keys at the same time; this happens when one or more rows or columns are faulty (shortcut or open connection). For a more detailed description of the keyboard and keymatrix, see section **Keyboard** in **System Module**.

If the failure mode is not clear, start with the **Keyboard Test** in *Phoenix*.

USB interface troubleshooting

Charging troubleshooting

Dead or jammed troubleshooting

Troubleshooting flow

COMPANY CONFIDENTIAL Copyright © 2006 Nokia. All rights reserved.

IrDA troubleshooting

Vibra troubleshooting

MiniSD troubleshooting

SIM troubleshooting

Display module troubleshooting

General instructions for display troubleshooting

The first step is to verify with a working display that the fault is not on the display module itself. The display module cannot be repaired.

The second step is to check that the cellular engine is working normally. This can be done by connecting the phone to a docking station and starting Phoenix service software. With the help of Phoenix read the phone information to check that also the application engine is functioning normally (you should be able to read the APE ID).

After these checks proceed to the display troubleshooting flowcharts. Use the Display Test tool in Phoenix to find the detailed fault mode.

Operating modes of the display

The display is in a normal mode when the phone is in active use.

The display is in a partial idle mode when the phone is in the screen saver mode.

The operating modes of the display can be controlled with the help of Phoenix.

Display blank	There is no image on the display. The display looks the same when the phone is on as it does when the phone is off. The backlight can be on in some cases.
Image on the display not correct	Image on the display can be corrupted or a part of the image can be missing. If a part of the image is missing, change the display module. If the image is otherwise corrupted, follow the appropriate troubleshooting diagram.
Backlight dim or not working at all	Backlight LED components are inside the display module. Backlight failure can also be in the connector or in the backlight power source in the main engine of the phone. Backlight is also controlled automatically by the ambient light sensor.
	This means that in case the display is working (image OK), but the backlight is not, follow the Display and Keyboard Backlight troubleshooting.
Visual defects (pixel)	Pixel defects can be checked by controlling the display with Phoenix. Use both colours, black and white, on a full screen.
	The display may have some random pixel defects that are acceptable for this type of display. The criteria when pixel defects are regarded as a display failure, resulting in a replacement of the display, are presented the following table.

Table 9 Display module troubleshooting cases

Item			White d	Black dot defect	Total				
1	Defect counts	R	G	В	White Dot Total	1	1		
		1	1	1	1				
2	Combine d defect counts	Not allow Two singl be interpr	Not allowed. Two single dot defects that are within 5 mm of each other should be interpreted as combined dot defect.						

Table 10 Pixel defects

Note: Blinking pixels are not allowed in normal operating temperatures and light conditions.

Display fault troubleshooting

Display and keyboard backlight troubleshooting

Context

The device has one LED driver that provides current for the display backlight.

The brightness of the display is adjusted by the Ambient Light Sensor (ALS).

You can enable/disable ALS with the help of Phoenix service software.

Display brightness can be adjusted manually, if ALS is disabled. If the ambient light sensor is enabled, it adjusts the display brightness automatically.

Related information

- Display fault troubleshooting (page 6–20)
- LED driver troubleshooting (page 6–28)
- ALS troubleshooting (page 6–25)

EL backlight fault troubleshooting

Troubleshooting flow

COMPANY CONFIDENTIAL Copyright © 2006 Nokia. All rights reserved.

ALS troubleshooting

Context

- If a phototransistor is broken, replace it with a typical phototransistor.
- After replacing the phototransistor or if calibration values are lost for some other reason, ALS re-tuning is required.
- Before starting the ALS calibration procedure, perform the 'Pull-up resistor calibration' in dark lighting conditions, and write the measured 'correction' value to the phone. After this ALS calibration procedure is performed, and the default co-efficient value '1' is written to the phone.
- Make sure that you have completed **Display and keypad backlight troubleshooting** first before starting **ALS troubleshooting**.

Here are some hints for ALS troubleshooting; the following troubleshooting diagram refers to these:

- *Phoenix* LED control tool also shows you luminance. The correct luminance in darkness is <20 lx, and in office environment 100-2000 lx. The luminance value depends strongly on the light source and the angle of the phone, so these values are only a rough guideline.
- LED driver control voltage measurement points can be found from the **LED driver troubleshooting** section. When backlight brightness is set to 100%, both GENOUT signals are low, and enable PWM is 100%.
- *Phoenix* has an ambient light sensor calibration tool for changing calibration values. The pull-up resistor calibration is done first. See the following procedure.

Steps

- 1. Cover the light guide (upper part of the A-Cover).
- 2. Start Phoenix.
- 3. Choose **File**→**Scan Product.**
- 4. Choose **Tuning→Ambient Light Sensor Calibration.**

🌃 Ambient Light Sensor Ca	libration 💶 🗙
Pull Up Resistor Calibration -	
Correction [%]:	0 😤
Start Level:	
Start) <u>W</u> rite
Ambient Light Sensor Calibra	tion
Use default values only	
Reference Level:	
Start Level:	
Co-efficient:	1.0000
Iphoto:	
Start	<u>W</u> rite
Close	Help

Figure 36 Ambient Light Sensor Calibration window

- 5. In the *Pull Up Resistor Calibration* pane, click **Start**, and **Write**.
- 6. In the *Ambient Light Sensor Calibration* pane, check the **Use default values only** check box, and click **Write**.
- 7. To end the calibration, click **Close**.

LED driver troubleshooting

Bluetooth troubleshooting

Introduction to Bluetooth troubleshooting

There are two main Bluetooth problems that can occur:

Problem	Description
Detachment of the BT antenna.	This would most likely happen if the device has been dropped repeatedly to the ground. It could cause the BT antenna to become loose or partially detached from the PWB. (see next page for details about BT antenna HW and Mechanics)
A malfunction in the BT ASIC, BB ASICs or Phone's BT SMD components.	This is unpredictable and could have many causes i.e. SW or HW related.

The main issue is to find out if the problem is related to the BT antenna or related to the BT system or the phone's BB and then replace/fix the faulty component.

Bluetooth settings for Phoenix

Steps

- 1. Start *Phoenix* service software.
- 2. From the **File** menu, choose **Open Product**, and then choose the correct type designator from the **Product** list.
- 3. Place the phone to a flash adapter in the local mode.
- 4. Choose **Testing** \rightarrow **Bluetooth LOCALS**.
- 5. Locate JBT-9's serial number (12 digits) found in the type label on the back of JBT-9. In addition to JBT-9, also SB-6, JBT-3 and JBT-6 Bluetooth test boxes can be used.
- 6. In the *Bluetooth LOCALS* window, write the 12-digit serial number on the **Counterpart BT Device Address** line.

This needs to be done only once provided that JBT-9 is not changed.

7. Place the JBT-9 box near (within 10 cm) the BT antenna and click **Run BER Test**.

Results

Bit Error Rate test result is displayed in the *Bit Error Rate (BER) Tests* pane in the *Bluetooth LOCALS* window.

*		Self Test Name		Result
can Mode		ASIC-Data RAM Flash ASIC-REG access RF-Harmonic alignme	ent	Unknown Unknown Unknown Unknown
lit Error Rate (BER) Tests				Ryn
Counterpart BT Device Address:	00e0031ee61b	Version Information		
Bit Frames: 3	300			
Hop Mode: E	Europe/USA	Field	Value	
Test Done:	OK	Locals Software	HCI Ver =	0x3, HCI Rev
Number of Bits	64800	Checksum Hardware Version	93be 0330	
%Bit Error Bate:	0.03%	Release Date	27\10\20	104
Result	ок	Prod Code Prod Code Basic	418141A bc4	a 0-
		Manufacturer HW Release Date	CSR 01\05\20	104
	Start			Read

Figure 37 BER test result

Bluetooth self tests in Phoenix

Steps

- 1. Start *Phoenix* service software.
- 2. Choose**File**→**Scan Product.**
- 3. Place the phone to a flash adapter.
- 4. From the **Mode** drop-down menu, set mode to **Local**.
- 5. Choose **Testing**→**Self Tests.**
- 6. In the *Self Tests* window check the following Bluetooth related tests:
 - ST_LPRF_IF_TEST
 - ST_LPRF_AUDIO_LINES_TEST
 - ST_BT_WAKEUP_TEST

7. To run the tests, click **Start**.

	Test Name	Startup Test	Result	Detailed	
	ST_EAR_DATA_LOOP_TEST	Yes	Passed [0]		
	ST_KEYBOARD_STUCK_TEST	No	Not executed [3]		
	ST_SIM_CLK_LOOP_TEST	Yes	Passed [0]		
	ST_SIM_IO_CTRL_LOOP_TEST	Yes	Passed [0]		
	ST_BACKUP_BATT_TEST	Yes	Passed [0]		
•	ST_LPRF_IF_TEST	No	Not executed [3]		
	ST_CAMERA_IF_TEST	No	Not executed [3]		
	ST_SIM_LOCK_TEST	Yes	Not executed [3]		1-
~	ST_LPRF_AUDIO_LINES_TEST	No	Not executed [3]		
	ST_UEM_CBUS_IF_TEST	Yes	Passed [0]		1
	ST_SLEEPCLK_FREQ_TEST	Yes	Passed [0]		
	ST_CMT_APE_WAKEUP_TEST	Yes	Not executed [3]		
	ST_MAIN_LCD_IF_TEST	No	Not executed [3]		
~	ST_BT_WAKEUP_TEST	No	Not executed [3]		
	ST_CDSP_TXC_DATA_TEST	No	Not executed [3]		-
			Details Unsele	ct All <u>S</u> elect /	All

Figure 38 Bluetooth self tests in *Phoenix*

Bluetooth BER failure troubleshooting

BT audio failure troubleshooting

Audio troubleshooting

Audio troubleshooting test instructions

Differential external earpiece and internal earpiece outputs can be measured either with a single-ended or a differential probe.

When measuring with a single-ended probe each output is measured against the ground.

Internal handsfree output is measured using a current probe, if a special low-pass filter designed for measuring a digital amplifier is not available. Note also that when using a current probe, the input signal frequency must be set to 2kHz.

The input signal for each loop test can be either single-ended or differential.

Required equipment

The following equipment is needed for the tests:

- Oscilloscope
- Function generator (sine waveform)
- Current probe (Internal handsfree PWM output measurement)
- Phoenix service software
- Battery voltage 3.7V

Test procedure

Audio can be tested using the Phoenix audio routings option. Three different audio loop paths can be activated:

- External microphone to Internal earpiece
- External microphone to Internal handsfree speaker
- Internal microphone to External earpiece

Each audio loop sets routing from the specified input to the specified output enabling a quick in-out test. Loop path gains are fixed and they cannot be changed using Phoenix. Correct pins and signals for each test are presented in the following table.

Phoenix audio loop tests and test results

The results presented in the table apply when no accessory is connected and battery voltage is set to 3.7V.

Earpiece, internal microphone and speaker are in place during measurement. Applying a headset accessory during measurement causes a significant drop in measured quantities.

The gain values presented in the table apply for a differential output vs. single-ended/differential input.

Loop test	Input terminal	Output terminal	Path gain [dB] (fixed)	Input volta ge [mVp- p]	Differen tial output voltage [mVp-p]	Outpu t DC level [V]	Outp ut curre nt [mA]
External Mic to Internal	XMICP and GND	EarP and GND	35	100	920	1.2	NA
Earpiece		EarN and GND					

Loop test	Input terminal	Output terminal	Path gain [dB] (fixed)	Input volta ge [mVp- p]	Differen tial output voltage [mVp-p]	Outpu t DC level [V]	Outp ut curre nt [mA]
External Mic to Internal Handsfree	XMICP and GND	B2102 pads	32	100	-	0	80m A +/- 10m A
Internal Mic to External Earpiece	B2100 (OUT/ GND)	XEARL and GND	35	100	1360	0	NA
		XEARR and GND					

Measurement data

Figure 39 Single-ended output waveform of the Ext_in_HP_out measurement when earpiece is connected.

Figure 40 Differential output waveform of the Ext_in_IHF_out out loop measurement when speaker is connected.

Figure 41 Single-ended output waveform of the HP_in_Ext_out loop when microphone is connected.

Internal earpiece troubleshooting

Internal microphone troubleshooting

Troubleshooting flow

COMPANY CONFIDENTIAL Copyright © 2006 Nokia. All rights reserved.

IHF troubleshooting

Troubleshooting flow

Issue 1

External microphone troubleshooting

External earpiece troubleshooting

Introduction to acoustics troubleshooting

Acoustics troubleshooting

Acoustics design ensures that the sound is detected correctly with a microphone and properly radiated to the outside of the device by speaker(s). The acoustics of the phone includes three basic systems: earpiece, Integrated Hands Free (IHF) and microphone.

The sound reproduced from the earpiece readiates through a single hole on the front cover (A-cover). The sound reproduced from the IHF speakers radiates from the sound holes on the bottom of the lower block. The hole of the microphone is located between the upper and the lower block, on the right side..

For a correct functionality of the phone, all sound holes must be always open. When the phone is used, care must be taken not to close any of those holes with a hand or fingers. The phone should be dry and clean, and no objects must be located in such a way that they close any of the holes.

Earpiece troubleshooting

Acoustics IHF troubleshooting

Microphone troubleshooting

Baseband manual tuning guide

Energy management calibration

Prerequisites

Energy Management (EM) calibration is performed to calibrate the setting (gain and offset) of AD converters in several channels (that is, **battery voltage**, **BSI**, **battery current**) to get an accurate AD conversion result. Hardware setup:

- An external power supply is needed.
- Supply 12V DC from an external power supply to CU-4 to power up the phone.
- The phone must be connected to a CU-4 control unit with a product-specific flash adapter.

Steps

- 1. Place the phone to the docking station adapter (CU-4 is connected to the adapter).
- 2. Start *Phoenix* service software.
- 3. Choose **File**→ **Scan Product.**
- 4. Choose **Tuning→Energy Management Calibration.**
- 5. To show the current values in the phone memory, click **Read**, and check that communication between the phone and CU-4 works.
- 6. Check that the **CU-4 used** check box is checked.
- 7. Select the item(s) to be calibrated.

Note: ADC calibration has to be performed before other item(s). However, if all calibrations are selected at the same time, there is no need to perform the ADC calibration first.

8. Click **Calibrate**.

The calibration of the selected item(s) is carried out automatically.

The candidates for the new calibration values are shown in the *Calculated values* column. If the new calibration values seem to be acceptable (please refer to the following "Calibration value limits" table), click **Write** to store the new calibration values to the phone permanent memory.

Parameter	Min.	Max.
ADC Offset	-20	20
ADC Gain	12000	14000
BSI Gain	1100	1300
VBAT Offset	2400	2650
VBAT Gain	19000	23000
IBAT (ICal) Gain	5750	12250

Table 11 Calibration value limits

- 9. Click **Read**, and confirm that the new calibration values are stored in the phone memory correctly. If the values are not stored to the phone memory, click **Write** and/or repeat the procedure again.
- 10. To end the procedure, close the *Energy Management Calibration* window.

Nokia Customer Care

7 — RF Troubleshooting and Manual Tuning Guide

(This page left intentionally blank.)

Table of Contents

Introduction to RF troubleshooting	7–5
RF key component placement	7–5
Receiver troubleshooting	7–9
Introduction to Rx troubleshooting	7–9
General instructions for RX troubleshooting	7 –9
GSM Rx chain activation for manual measurements / GSM RSSI measurement	7-10
Transmitter troubleshooting	7-11
General instructions for TX troubleshooting	7-11
TX 850/900 troubleshooting	7–14
TX 1800/1900 troubleshooting	7–15
Checking antenna functionality	7–15
RF tunings	7-17
Introduction to RF tunings	7-17
RF autotuning	7-17
System mode independent manual tunings	7-20
Rf channel filter calibration	7-20
PA (power amplifier) detection	7-21
GSM receiver tunings	7-21
Rx calibration (GSM)	7-21
Rx band filter response compensation (GSM)	7-25
GSM transmitter tunings	7–30
Tx IQ tuning (GSM)	7-30
Tx power level tuning (GSM)	7-32

List of Tables

Table 12 Rf channel filter calibration tuning limits	7-20
Table 13 RF tuning limits in Rx calibration	7-24

List of Figures

′-6
'-7
′-8
′-8
·10
·11
·13
·16
·16
·20
, , , ,

(This page left intentionally blank.)

Introduction to RF troubleshooting

All measurements should be done using:

- spectrum analyser with a high-frequency high-impedance passive probe (LO-/reference frequencies and RF power levels)
- oscilloscope with a 10:1 probe (DC-voltages and low frequency signals)

The RF section of the phone is around RF ASIC N7505, TX FEM N7520, and all of this RF section is built inside of non-removable shields A7506, A7507. Therefore, the engine will be replaced after carefully checked power and receiver tuning at antenna port.

RF key component placement

Figure 42 RM-88 RF components

Bluetooth Antenna

Figure 43 RM-88 BT component placement

Figure 44 RM-88 component placement (top)

Figure 45 RM-88 component placement (bottom)

Receiver troubleshooting

Introduction to Rx troubleshooting

Rx can be tested by making a phone call or in the local mode. For the local mode testing, use Phoenix service software.

The main Rx troubleshooting measurement is RSSI measurement. This test measures the signal strength of the received signal.

In GSM, the input signal can be either a real GSM signal or a CW (Continuous Wave) signal, which is 67.771 kHz above the carrier frequency.

For service tool usage instructions, refer to section **Service Tools and Service Concepts**.

General instructions for RX troubleshooting

Steps

1. Connect a test jig to a computer with a DKE-2 cable or to a FPS-10 flash prommer with a modular cable (XCS-4).

Make sure that you have a PKD-1 dongle connected to the computer's parallel port.

2. Connect a DC power supply to a module test jig (MJ-67).

Note: Set the DC supply voltage to 12 V and set the jumper connector on the test jig's **reg.pass** switch to "ON" position.

3. Connect an RF cable between the RF connector of the module test jig (MJ-67) and measurement equipment or alternatively use a 50 ohms (at least 2 W) dummy load in the module test jig RF connector, otherwise GSM may be damaged.

Note: Make sure that all connections are made to the correct RF connector.

- 4. Set Rx on.
 - i Set the phone module to the test jig and start *Phoenix service software*.
 - ii Initialize connection to the phone. (With FPS-10 use FBUS driver when using DKE-2 and COMBOX driver).
 - iii From the File menu, choose product: **File -> Choose Product -> xx-x*** (* = type designator of the phone, scan product).
 - iv From the toolbar, set operating mode to "Local".
- 5. EGSM900, GSM850/1800/1900 troubleshooting
 - i From the Testing menu, activate the *RF Controls* window: **Testing -> GSM -> RF Controls**.

- ii In the *RF Controls* window:
 - Select band "GSM850", "GSM900" or "GSM1800" or "GSM1900" (Default = "GSM850").
 - Set Active unit to "Rx" (Default = "Rx").
 - Set Operation mode to "Burst" (Default = "Burst").

- Set Rx/Tx channel to 190 on GSM850, 37 on GSM900 band or 700 on GSM1800 band or 661 on GSM1900 (Defaults).
- Set Edge to "Off" (Default). (Not active in RXmode).
- Set Tx PA mode to "Free" (Default). (Not active in RXmode).
- Apply 942.46771 MHz (channel 37 + 67.710 kHz offset), 881.66771MHz (channel 190 + 67.710 kHz), 1842.86771 MHz (channel 700 + 67.710 kHz offset) or 1960.06771 MHz (channel 661 + 67.71 kHz) – 90 dBm signal to the RF-connector (remember to compensate for cable attenuation).

Acti <u>v</u> e Unit: Band:	Tx •	Rx/Tx Channel:	37	897.400000
Operation Mode:	Burst 💌	<u>0</u>	1	
RX Control Value:	3			
Monitor Channel:	37 942,400	000		
A <u>G</u> C:	22			<u>.</u>
TX Control Values			All 1	-
TX Control Value: E <u>dg</u> e:	Off	Tx Data Type:	JAILI	

Figure 46 RF Controls window

GSM Rx chain activation for manual measurements / GSM RSSI measurement

Context

RSSI signal measurement is the main Rx troubleshooting measurement. The test measures the strength of the received signal.

Steps

- 1. Start *Phoenix* service software.
- 2. Choose **Testing** \rightarrow **GSM** \rightarrow **RSSI Reading**.
- 3. Set the RF signal generator for channel frequency +67.771 kHz CW mode with –80 dBm signal. Alternatively set the cellular tester downlink channel to the appropriate channel. Make sure that the tester is set to continuous mode, not to burst mode.

4. In the *RSSI Reading* window, select the appropriate band and channel.

🌃 RSSI Reading	
Measuring mode Sum vector <u>Q</u> branch <u>I</u> branch	Reading mode © Co <u>n</u> tinuous © <u>O</u> nce
RSSI level: -89.77 dBm	
Start <u>F</u> inish	<u>C</u> lose <u>H</u> elp

Figure 47 *RSSI Reading* window

5. To start the measurement, activate GSM Rx chain, click **Start**.

Results

RSSI reading values of the selected band and channel are displayed. The RSSI level must be the same value which is set at the signal generator (-90 dBm).

If RSSI reading is far away from -90dBm, try to do RX tuning. Change engine if problem still shows up after re-tuning.

Transmitter troubleshooting

General instructions for TX troubleshooting

Context

- Tx troubleshooting requires Tx operation.
- Do not transmit on frequencies that are in use!
- Transmitter can be controlled in the local mode for diagnostic purposes.
- The most useful Phoenix tool for GSM transmitter testing is "RF Controls".
- Remember that retuning is not a fix! Phones are tuned correctly in production.

The first set of steps instructs how to assemble the test setup. This setup is general for all Tx troubleshooting tasks.

Alternative steps provide specific troubleshooting instructions for *Phoenix* service software.

Caution: Never activate the GSM transmitter without a proper antenna load. There should be always 50 ohm load connected to the RF connector (antenna, RF-measurement equipment or at least 2 watts dummy load), otherwise GSM PA may be damaged.

Steps

1. Connect a test jig to a computer with a DKE-2 cable or to a FPS-10 flash prommer with a modular cable (XCS-4).

Make sure that you have a PKD-1 dongle connected to the computer's parallel port.

2. Connect a DC power supply to a module jig (MJ-67).

Note: When repairing or tuning a transmitter, use an external DC supply with at least 3 A current capability.

Set the DC supply voltage to 12V and set the jumper connector on the test jig's **reg.pass** switch to "ON" position.

3. Connect an RF cable between the RF connector of the module test jig (MJ-69) and measurement equipment or alternatively use a 50 ohms (at least 2 W) dummy load in the module test jig RF connector, otherwise GSM may be damaged.

Note: There are two antenna connectors in the module jig:

- one for GSM
- one for Bluetooth

Make sure that all connections are made to the correct RF connector.

Normally a spectrum analyser is used as measurement equipment.

Note: The maximum input power of a spectrum analyser is +30 dBm.

To prevent any damage, it is recommended to use 10 dB attenuator on the spectrum analyzer input.

- 4. Set Tx on.
 - i Set the phone module to the test jig and start *Phoenix service software*.
 - ii Initialize connection to the phone. (With FPS-10 use FBUS driver when using DAU-9S and COMBOX driver).
 - iii From the File menu, choose product: File -> Choose Product -> xx-x* (* = type designator of the phone).
 - iv From the toolbar, set operating mode to "Local".
- 5. EGSM900, GSM850/1800/1900 troubleshooting
 - i From the Testing menu, activate the *RF Controls* window: **Testing -> GSM -> RF Controls**.

Product Flashing	Testing Tuning Tool	s Win	idow Help
mode: Local	GSM	•	RF Controls
node. [Leocal	WCDMA	•	RSSI Read
	ADC Reading		SNR Measurement
	Audio Control		
	Bluetooth Locals		
	Call Test		

- ii In the *RF Controls* window:
 - Select band "GSM850", "GSM900" or "GSM1800" or "GSM1900" (Default = "GSM850").
 - Set Active unit to "Tx" (Default = "Rx").
 - Set Operation mode to "Burst" (Default = "Burst").
 - Set Tx data type to "Random" (Default = "All1").
 - Set Rx/Tx channel to 190 on GSM850, 37 on GSM900 band or 700 on GSM1800 band or 661 on GSM1900 (Defaults).
 - Set Edge to "Off" (Default).
 - Set Tx PA mode to "Free" (Default).
 - Set power level to 5 (Default = 19) on GSM850/900 or to 0 (Default = 15) on GSM1800 or GSM1900.

Common GSM R	F Control Values			
Acti <u>v</u> e Unit: Band:	Tx ▼ GSM 900 ▼	R <u>x</u> /Tx Channel:	37	897.400000
Operation Mode	Burst 💌	<u>B</u> C.	1	
RX Control Value	\$			
Monitor Channel	37 942.400	000		
A <u>G</u> C:	22			<u>~</u>
TX Control Value	\$		ß	
Edge:	Off 💌	Tx Data Type:	All 1	-
Tx PA <u>M</u> ode:	Free	Tx Po <u>w</u> er Level	5	•
		-	Class	1

Figure 48 RF Controls window

TX 850/900 troubleshooting

TX 1800/1900 troubleshooting

Troubleshooting flow

Checking antenna functionality

The main antenna has one antenna: GSM .

In the GSM antenna, there is one Feed and two GND contacts.

The contacts of the GSM antenna are separated in the (RDC = 0 ohm) short-circuit.

Figure 50 Feed and GND spots of the main antenna

The antenna is functioning normally when the contacts function (RDC = 0 ohm) and the antenna is visually intact.

BT antenna

BT antenna has one Feed and one GND contact. The antenna is functioning normally when the contacts function (RDC = 0 ohm) and the antenna is visually intact.

RF tunings

Introduction to RF tunings

Important: Only perform RF tunings if:

- one or more of the RF components is changed
- flash Memory chip is changed or otherwise corrupted.

RF calibration is always performed with the help of a product-specific module jig, never with an RF coupler. Using an RF coupler in the calibration phase will cause a complete mistuning of the RF side.

Important: After RF component changes, **always** use autotuning. Manual tunings are only required in rare cases.

Cable and adapter losses

RF cables and adapters have some losses. They have to be taken in account when the phone is tuned. As all the RF losses are frequency dependent, the user have to be very careful and understand the measurement setup. In the following table there are RF attenuations of the module jig:

Band	Attenuation
GSM850	0.2 dB
GSM900	0.2 dB
GSM1800	0.3 dB
GSM1900	0.6 dB

RF autotuning

Prerequisites

For information on the recommended test set-up, refer to the corresponding information on PWS/NOL.

Before you can use the auto-tune feature, the GPIB driver from the GPIB card vendor must be installed and running.

The autotune **.ini** file must be in a correct place: **C:\Program Files\Nokia\Phoenix\products\xx-x* \autotune_xx-x*.ini** (**= indicates the type designator of the phone, e.g. RM-1*)

Context

RF autotuning is performed with the aid of Digital Radio Communication Tester. Autotuning covers all RF tunings that are needed to perform after RF component repairs.

Note: Do not perform RF autotuning without a proper reason. Phones are tuned in production and an RF tuning may be performed only after component repairs or if the RF tuning information is lost.

Steps

1. Connect the communication tester to the GPIB bus.

- 2. Start Phoenix service software.
- 3. From the Tools menu, choose Options -> GPIB Card.

4. In the Card Type line, select CEC8Bit, then click Start. After clicking Start, the name of the communication tester appears in the list of found Listeners.

Card Number	GBIP Address	Card Type
0	0	CEC 8Bit
Listeners		
Pri Address	Sec Address	Identity
28	0	Rohde&Schwarz,CMU 200-1100.0008.02,103211,V3.50!

5. To specify the cable loss from module jig to the communication tester, choose "Set Loss" from the Tuning menu.

Click the Cable tab and add the extra cable attenuation.
 Note: Cable losses have to be determined on the basis of a cable used.

Frequency / Hz	Loss / dB
836600000	3
881600000	3
897400000	3
942400000	3
1747800000	3.5
1842800000	3.7
1880000000	3.5
1950000000	4
196000000	4
2140000000	3.9
-	

7. To start autotuning, choose Auto-Tune from the Tuning menu.

🔓 Phoenix	
File Edit Product Flashing Testing	Tuning Tools Window Help GSM
opolawig model 2008	WCDMA
	Set Loss 5 Energy Management Ambient Light Sensor Calibration
	Rf Channel Filter Calibration Temperature Sensor Calibration

- 8. In the Auto-Tune window, click Options.
- 9. In the Auto-Tune options window, see that the "Enable showing of messages" check box is checked, then click OK.

luto-Tune Options		×
Logging F Enable logging to file Log files location:		
C:\Program Files\Nokia\Phoenix\Auto-Tune Logs Delete all log files		Browse
Settings -		
Continue on tuning errors	OK Cancel	Help

10. To complete the RF autotuning, click OK.

Results

"Autotuning completed successfully" message appears.

System mode independent manual tunings

Rf channel filter calibration

Context

Rf channel filter calibration tunes the internal low pass filters of Rx and Tx ASICs that limit the bandwidth of BB IQ signals.

One common calibration is made for GSM.

Table 12 Rf channel filter calibration tuning limits

	Min	Тур	Max
Tx filter	0	10	31
Rx filter	0	16	31

Steps

- 1. From the **Operating mode** drop-down menu, set mode to **Local**.
- 2. Choose **Tuning** \rightarrow **Rf Channel Filter Calibration**.
- 3. Click **Tune**.
- 4. To save the values to the PMM (Phone Permanent Memory) area, click Write.
- 5. To close the *Rf Channel Filter Calibration* window, click **Close**.

Results

🌃 Rf Channel Filte	er Calibration	h.		<u> </u>
Cut-off Frequence	ies			
Tx filter:				_
Rx mixer: 16		Rx filter:	16	
Iune	<u>R</u> ead	<u>₩</u> rite	<u>C</u> lose	Help

Figure 51 Rf channel filter calibration typical values

PA (power amplifier) detection

Context

The PA detection procedure detects which PA manufacturer is used for phone PAs.

If a PA is changed or if the permanent memory (PMM) data is corrupted, PA detection has to be performed before Tx tunings.

Steps

- 1. From the **Operating mode** drop-down menu, set mode to **Local**.
- 2. Choose **Tuning** \rightarrow **PA Detection**.
- 3. Click Tune.
- 4. Check that the detected PA manufacturers are corresponding to the actual chips on the board.
- 5. To end the procedure, click **Close**.

GSM receiver tunings

Rx calibration (GSM)

Context

Rx Calibration is used to find out the real gain values of the GSM Rx AGC system and tuning response of the AFC system (AFC D/A init value and AFC slope)

Steps

- 1. Connect the GSM connector of the module jig to a signal generator.
- 2. Start *Phoenix* service software.
- 3. From the **Operating mode** drop-down menu, set mode to **Local**.
- 4. Choose **Tuning** \rightarrow **GSM** \rightarrow **Rx Calibration**.
- 5. Check the **Load from Phone** check box, and uncheck **Save to Phone**.
- 6. From the **Band** drop-down menu, choose e.g. **GSM900**.

7. Click **Start**.

🌃 Phoenix				_ 🗆 🗙
File Edit Product Flashing Testing Te	uning Tools Window	Help		
Operating mode: Local	Read Change	with Reset	Band:	GSM 900 💌
KRx Calibration		_		
PM values:	☑ Load from Phone	<u>Start</u>		
	C Save to Phone	Calibrate		
	1 Save to Phone	Help		

8. Click Calibrate.

🔀 Rx Calibration		
PM values: Afc value : 23.000000 Afc slope : 114.000000 Rssi : 110.593750 PaTemp : 0.0000000	✓ Load from Phone ✓ Saye to Phone	<u>Start</u> Calibrate St <u>op</u> <u>H</u> elp

9. Connect the signal generator to the phone, and set frequency and amplitude as instructed in the **Rx Calibration with band EGSM900** pop-up window.

Important: The calibration uses a non-modulated CW signal. Increase the signal generator level by cable attenuation and module jig probe attenuation.

१x Calibration			<u> </u>	
PM values:	22 22222	✓ Load from Phone	<u>S</u> tart	
Afc value : Afc slope : Rssi :	23.000000 114.000000 110.593750		Calibrate	
Falemp :	0.000000	Save to Phone	Stop	
			Help	
		Rx Calibration with ba Set the Rf signal gener Power level: -60 dBm	and EGSM900 rator:	>
		Input signal frequen 942.467710	ncy:) MHz	
		Press OK to tune, pres	cancel or ESC to exit tuning p	ocess.

- 10. To perform the tuning, click **OK**.
- 11. Check that the tuning values are within the limits specified in the following table:

	Min	Тур	Max	Unit	
GSM850					
AFC Value	-200	-10562	200		
AFC slope	0	122	200		
RSSIO	106	107110	114	dB	
GSM900					
AFC Value	-200	-10562	200		
AFC slope	0	122	200		
RSSIO	106	107110	114	dB	
GSM1800					
RSSIO	104	104109	114	dB	
GSM1900					
RSSIO	104	104109	114	dB	

Table 13 RF tuning limits in Rx calibration

12. To save values to the phone, check the **Save to Phone** check box, and click **Stop**.

🕻 Rx Calibration		
Calibration values: Afr: value : -18 Mm Afc slope : 120.00 Rssi 0 : 109.06 Rssi 1 : 0.0000 Rssi 2 : 0.0000 Rssi 3 : 0.0000 Rssi 4 : 0.0000 Rssi 5 : 0.0000 Rssi 6 : 0.0000 Rssi 8 : 0.0000 Rssi 9 : 0.0000 Rssi 10 : 0.0000 Rssi 11 : 0.0000 Rssi 12 : 0.0000 Rssi 13 : 0.0000 Rssi 14 : 0.0000 Rssi 12 : 0.0000 Rssi 13 : 0.0000 Rssi 14 : 0.0000 Rssi 13 : 0.0000 Rssi 14 : 0.0000 PaTemp : 627.00	Calibration mode	<u>Start</u> <u>Calibrate</u> St <u>op</u> <u>H</u> elp

Next actions

Repeat steps 3 to 8 for GSM850, GSM1800 and GSM1900

Rx band filter response compensation (GSM)

Prerequisites

Rx calibration must be done before the Rx Band Filter Response Compensation

Context

In each GSM Rx band, there's a band rejecting filter in front of RF ASIC front end. The amplitude ripple caused by these filters causes ripple to the RSSI measurement and therefore calibration is needed.

The calibration has to be repeated for each GSM band.

Steps

- 1. Connect module jig's GSM connector to signal generator.
- 2. From the dropdown menus, set "Operating mode" to Local, "System mode" to GSM, and Band to GSM900.

3. From the Tuning menu, choose GSM -> Rx Band Filter Response Compensation.

- 4. Check "Manual" and "Load from Phone" check boxes. Clear "Save to Phone" check box
- 5. Click Start.

put Signal Le	evel (cBm): -60			I Load from Phone _	Start
Channel	Input Frequency (MHz)	Measured Level Difference (dB)	-		Iune
				Save to Phone	Stop
				Tuning mode C <u>A</u> utomatic € <u>M</u> anual	Help
				Copying table to clipboard: prose mouse left button on the left top of the table (with text 'Channel').	

6. Click Tune.

put Signal Le	evel (dBm): 60 +		Load from Phone	<u>S</u> tart
Channel	Input Frequency (MHz)	Measured Level A Difference (dB)		<u>I</u> une
		-1.641	Save to Phone	Stop
		-0.641		
		-0.953	Tuning mode	Help
		-0.453	C Automatic	
		0.000	Guidenduc	
		0.328	(• <u>M</u> anual	
		0.172	711	
		0.172		
		0.034		
		0.000		
		0.000		
		0.000		
		0.000		
		0.000		
		0.000		
		0.000		
		0.000	Copuing table to clipboard	
		0.000	press mouse left button	
		0.000	on the left top of the table	

7. Connect signal generator to the phone and set frequency and amplitude as instructed in the "Rx Band Filter Response Compensation for EGSM900" popup window.

Channel	Input Frequency (MHz)	Measured Level Difference (dB)	1	Iune
965	923.26771	-1.641	Save to Phone	Stop
975	925.26771	-0.641		- 12F
987	927.66771	-0.953	- Tuning mode	Help
1009	932.06771	-0.453	C A L C	Пеф
37	942.46771	0.000	Automatic	
90	953.06771	0.328	Manual	
114	957.86771	0.172		
124	959.86771	0.172		
136	962.26771	-0.094		
		Re Band Filter Responses Manual Tuning - stag Set the Rf signal gen Power level: -60 dBm + Input signal freque 923.26771 Press OK to tune, pre	ensel compensation for Ed e 1 of 9. erator: cable attenuation ency: MHz ess Cancel or ESC to exit tuni	ng process.

- 8. To perform tuning, click OK.
- 9. Go through all 9 frequencies.

10. Check that the tuning values are within the limits specified in this table:

	Min	Тур	Мах	Unit
GSM850	-	-		
Ch. 118 / 867.26771 MHz	-10	-1	5	dB
Ch. 128 / 869.26771 MHz	-3	0	5	dB
Ch. 140 / 871.66771 MHz	-3	0	5	dB
Ch. 172 / 878.06771 MHz	-3	0	5	dB
Ch. 190 / 881.66771 MHz	-3	0	5	dB
Ch. 217 / 887.06771 MHz	-3	0	5	dB
Ch. 241 / 891.86771 MHz	-3	0	5	dB
Ch. 251 / 893.86771 MHz	-3	0	5	dB
Ch. 261/ 895.86771 MHz	-10	-1	5	dB
GSM900	•	•	3	
Ch. 965 / 923.26771 MHz	-10	-1	5	dB
Ch. 975 / 925.26771 MHz	-3	0	5	dB
Ch. 987 / 927.66771 MHz	-3	0	5	dB
Ch. 1009 / 932.06771 MHz	-3	0	5	dB
Ch. 37 / 942.46771 MHz	-3	0	5	dB
Ch. 90 / 953.06771 MHz	-3	0	5	dB
Ch. 114 / 957.86771 MHz	-3	0	5	dB
Ch. 124 / 959.86771 MHz	-3	0	5	dB
Ch. 136 / 962.26771 MHz	-10	-1	5	dB
GSM1800				

	Min	Тур	Мах	Unit
Ch. 497 / 1802.26771 MHz	-10	-1	5	dB
Ch. 512 / 1805.26771 MHz	-3	0	5	dB
Ch. 535 / 1809.86771 MHz	-3	0	5	dB
Ch. 606 / 1824.06771 MHz	-3	0	5	dB
Ch. 700 / 1842.86771 MHz	-3	0	5	dB
Ch. 791 / 1861.06771 MHz	-3	0	5	dB
Ch. 870 / 1876.86771 MHz	-3	0	5	dB
Ch. 885 / 1879.86771 MHz	-3	0	5	dB
Ch. 908 / 1884.46771 MHz	-10	-1	5	dB
GSM1900				
Ch. 496 / 1927.06771 MHz	-10	-1	5	dB
Ch. 512 / 1930.26771 MHz	-3	0	5	dB
Ch. 537 / 1935.26771 MHz	-3	0	5	dB
Ch. 586 / 1945.06771 MHz	-3	0	5	dB
Ch. 661 / 1960.06771 MHz	-3	0	5	dB
Ch. 736 / 1975.06771 MHz	-3	0	5	dB
Ch. 794 / 1986.66771 MHz	-3	0	5	dB
Ch. 810 / 1989.86771 MHz	-3	0	5	dB
Ch. 835 / 1994.86771 MHz	-10	-1	5	dB

11. Check the "Save to Phone" check box and click Stop if the values are within the limits.

Channel	Input Frequency (MHz)	Measured Level Difference (dB)		Iune
965	923.26771	-1.953	Save to Phone	Stop .
975	925.26771	-0.859		
987	927.66771	-0.984	- Tuning mode	Helo
1009	932.06771	-0.516		Telh
37	942.46771	-0.188	C Automatic	
90	953.06771	-0.094	Manual	
114	957.86771	-0.188	_	
124	959.86771	-0.297		
136	962.26771	-0.516		

Next actions

Repeat the steps 4 to 10 for GSM850, GSM1800 and GSM1900.

GSM transmitter tunings

Tx IQ tuning (GSM)

Context

The Tx path branches to I and Q signals at RF I/Q modulator. Modulator and analog hardware located after it cause unequal amplitude and phase disturbance to I and Q signal paths. Tx IQ tuning tuning balances the I and Q branches.

Tx IQ tuning must be performed on all GSM bands. .

Steps

- 1. From the dropdown menus, set "Operating mode" to Local, "System mode" to GSM, and Band to GSM900.
- 2. From the Tuning menu, choose GSM -> Tx IQ Tuning.

uct Flashing Testing	Tuning Tools Window Help		
Local	GSM ►	Rx Calibration	
	WCDMA +	Rx Band Filter Response Compensation	
	Auto-Tune	Tx IQ Tuning Tx Power Level Tunks	
	Set Loss		
	Energy Management Ambient Light Sensor Calibration	Rx Am Suppression	
	Rf Channel Filter Calibration		
	Temperature Sensor Calibration		

- 3. Set Mode to Automatic and Edge to Off.
- 4. Click Start.

Wait until automatic tuning has finished and moved the sliders. Values are written to the phone memory automatically.

XIDC offset	-10 %;		5%	 0%		, 5 <i>%</i>	 10 %
	-10 %;		5%	 0%		5%	 10 %
Asselbude diff	-6.0						 6.0
Amplicade alla	27.0 °				i.	4	 153.0 °
Phase diff		-0					

5. When the values have been written to the phone memory, click the Finish button to end the tuning.

	-10 %;		-52	ξ	0	%	5	5%	10 %	
T×⊥DC offset:					10 10	Ì				0.700
	-10 %;		-5 %	:	0	%	5	%	10 %;	
TX <u>Q</u> DC offset:		<u>.</u> .	<u>.</u> .			<u>ز ا</u>				1.700
	-6.0		1 20		185 V.				6.0	
Amplitude diff:	, international statements of the statement of the statem	<u></u>	1		-) —		2 4	<u> </u>	0.0
	27.0 ⁰								153.0	D
<u>P</u> hase diff:		•	•	•	<u>'</u> _'	•			<u> </u>	88.5
	70									

- 6. Change band to GSM850 and repeat steps 4 to 5.
- 7. Change band to GSM1800 and repeat steps 4 to 5.
- 8. Change band to GSM1900 and repeat steps 4 to 5.
- 9. To close the tuning window, click Close.

Next actions

Tuning sliders should be close to the center of the scale after the tuning and within the limits specified in the table below. If they are not within the limits, check Tx IQ quality manually.

	Min	Тур	Мах	Unit
GSM850				
I DC offset / Q DC offset	-6	-4	б	%
Ampl	-1	0	1	dB
Phase	85	90	95	0
GSM900				

	Min	Тур	Мах	Unit
I DC offset / Q DC offset	-6	-4	6	%
Ampl	-1	0	1	dB
Phase	85	90	95	0
GSM1800/GSM1900)			
I/Q DC	-6	0.5	6	%
Ampl	-1	0	1	dB
Phase	95	100	110	0

Tx power level tuning (GSM)

Context

Because of variations at IC process and discrete component values, actual transmitter RF gain of each phone is different. Tx power level tuning is used to find out mapping factors called 'power coefficients'. These adjust the GSM transmitter output power to fulfill the specifications.

For EDGE transmission the bias settings of the FEM are adjusted in order to improve linearity. This affects the PA gain and hence the power levels have to be aligned separately for EDGE transmission.

Tx power level tuning has to be performed on all GSM bands.

Steps

- 1. Connect the phone to a spectrum analyzer.
- 2. From the dropdown menus, set "Operating mode" to Local, "System mode" to GSM, and Band to GSM900.
- 3. From the Tuning menu, choose GSM -> Tx Power Level Tuning.

- 4. Set Mode to Automatic and Edge to Off.
- 5. Set the spectrum analyzer for power level tuning:

Frequency	channel frequency (836.6MHz GSM850, 897.4MHz GSM900, 1747.8MHz GSM1800, 1880MHz GSM1900)
Span	0 Hz
Sweep time	2ms
Trigger	Video triggering (-10dBm)
Resolution BW	3MHz
Video BW	3MHz
Reference level offset	sum cable attenuation with module jig attenuation
------------------------	---
Reference level	33dBm

A power meter with a peak power detector can be also used. Remember to take the attenuations in the account!

6. Click Start.

🏀 Tx Power Level Tuning	<u>_ </u>
Press Start to begin Tx Power Level Tuning	Start Stop Calculate coefficients Load from Permanent memory Save to Permanent memory PC Edge: Off Zero DAC:
Band: GSM 900 Tx PA Mode:	High 🔽

7. Adjust power levels 5, 15 and 19 to correspond the "Target dBm" column by pressing + or – keys.

	Coefficient	Target dBm	DAC	Start
5	0.6465	32.5	661	
6	0.5425	^{VS} 31.0	555	Stop
7	0.4695	29.0	480	
8	0.4178	27.0	427	Calculate coefficients
9	0.3743	25.0	382	and the second sec
10	0.3359	23.0	343	Load from
11	0.3059	21.0	312	Permanent memory
12	0.2820	19.0	288	- Save to
13	0.2631	17.0	269	
14	0.2473	15.0	252	Permanent memory
15	0.2336	13.0	238	I PC
16	0.2223	11.0	227	
17	0.2125	9.0	217	Edge: Off 💌
18	0.2038	7.0	208	Zero DAC
19	0.1948	5.0	199	Zelo DAC.
Base	0.0948	-30.0	97	
Test	0.0948		97	
Band:	GSN	1 900 🔻 Tx F	A Mode:	High 💌

8. Click Calculate Coefficients.

	Coefficient	Target dBm	DAC	Start
5	0.6465	32.5	661	
6	0.5425	31.0	555	Stop
7	0.4695	29.0	480	
8	0.4178	27.0	427	Calculate coefficients
9	0.3743	25.0	382	
10	0.3359	23.0	343	Load from
11	0.3059	21.0	312	Permanent memory
12	0.2820	19.0	288	Cause In
13	0.2631	17.0	269	Save to
14	0.2473	15.0	252	Permanent memory
15	0.2336	13.0	238	T PC
16	0.2223	11.0	227	[
17	0.2125	9.0	217	Edge: Off 💌
18	0.2038	7.0	208	7
19	0.1948	5.0	199	Zero DAL:
Base	0.0948	-30.0	97	
Test	0.0948		97	
Band:	GSN	1900 💌 Tx F	A <u>M</u> ode:	High 💌

9. Check that the coeffiecient values are within the limits specified in the following table.

	Min	Тур	Мах
GSM850 EDGE off			
PL5 coefficient	0.45	0.626	0.73
PL15 coefficient		0.234	
PL19 coefficient	0.12	0.195	0.3
GSM850 EDGE on			
PL8 coefficient	0.35	0.419	0.6
PL15 coefficient		0.247	
PL19 coefficient	0.12	0.204	0.3
GSM900 EDGE off			
PL5 coefficient	0.45	0.626	0.73
PL15 coefficient		0.234	
PL19 coefficient	0.12	0.195	0.3
GSM900 EDGE on			
PL8 coefficient	0.35	0.419	0.6
PL15 coefficient		0.247	
PL19 coefficient	0.12	0.204	0.3
GSM1800 EDGE off			
PL0 coefficient	0.45	0.51	0.7

	Min	Тур	Max
PL11 coefficient		0.219	
PL15 coefficient	0.12	0.185	0.3
GSM1800 EDGE on			
PL2 coefficient	0.35	0.394	0.6
PL11 coefficient		0.23	
PL15 coefficient	0.12	0.194	0.3
GSM1900 EDGE off			
PL0 coefficient	0.45	0.482	0.7
PL11 coefficient		0.218	
PL15 coefficient	0.12	0.184	0.3
GSM1900 EDGE on			
PL2 coefficient	0.35	0.377	0.6
PL11 coefficient		0.23	
PL15 coefficient	0.12	0.193	0.3

If the values are within the limits, check that the "Save to Phone Permanent Memory" check box is checked and click Stop.

	Coefficient	Target dBm	DAC	Start
5	0.6465	32.5	661	
6	0.5425	31.0	555	Stop N
7	0.4695	29.0	480	- W
8	0.4178	27.0	427	Calculate coefficients
9	0.3743	25.0	382	Si in the second
10	0.3359	23.0	343	Load from
11	0.3059	21.0	312	Permanent memory
12	0.2820	19.0	288	Courts -
13	0.2631	17.0	269	Save to
14	0.2473	15.0	252	Permanent memory
15	0.2336	13.0	238	E PC
16	0.2223	11.0	227	1
17	0.2125	9.0	217	Edge: Off 💌
18	0.2038	7.0	208	-
19	0.1948	5.0	199	∠ero DAL:
Base	0.0948	-30.0	97	
Test	0.0948		97	
Band:	GSM	1900 💌 Tx F	A <u>M</u> ode:	High

10. Set **Edge** mode on and start tuning again. Change video averaging to 50.

238	F PC	
217	Edge:	Off 💌
208	Zero Dá	n Off
99	2010 075	i On
97		43
97		

11. Tune EDGE power levels to the corresponding target power levels.

Only power levels **8**, **15** and **19** are tuned in GSM900 and **2**, **10** and **15** in GSM1800/1900. The rest are calculated by clicking the Calculate Coefficients button. Check the coefficients against the RF tuning limits table presented in Step 9.

12. When the tuning is completed, click Stop.

Next actions

Repeat steps 4 to 9 for GSM1800 and GSM1900. On those bands only power levels **0**, **11** and **15** need to be tuned.

Nokia Customer Care

8 — System Module

(This page left intentionally blank.)

Table of Contents

Baseband description	<mark>8–5</mark>
System module block diagram	<mark>8–5</mark>
Baseband functional description	<mark>8–6</mark>
Absolute maximum ratings	<mark>8–6</mark>
Phone modes of operation	<mark>8–7</mark>
Operation modes	<mark>8–8</mark>
Power distribution	<mark>8–9</mark>
Clocking scheme	8–10
Bluetooth	<mark>8–10</mark>
IrDA	<mark>8–11</mark>
USB	<mark>8–11</mark>
SIM card	<mark>8–11</mark>
RF-BB interface	<mark>8–11</mark>
FBUS	<mark>8–12</mark>
ACI interface	8–12
SIM interface	<mark>8–13</mark>
MiniSD interface	<mark>8–13</mark>
Battery interface	<mark>8–14</mark>
User interface	<mark>8–15</mark>
Display interface	<mark>8–15</mark>
Keyboard	8–15
Display and keyboard backlight	<mark>8–15</mark>
ALS interface	<mark>8–15</mark>
E-Mail LED	8–16
Audio concept	8–17
Audio HW architecture	8–17
Internal microphone	8–18
Internal earpiece	<mark>8–19</mark>
Internal speaker	<mark>8–19</mark>
Vibra circuitry	<mark>8–19</mark>
Baseband technical specifications	8–20
External interfaces	<mark>8–20</mark>
USB IF electrical characteristics	<mark>8–20</mark>
FBUS interface electrical characteristics (between RAP and N2300)	<mark>8–21</mark>
SIM IF connections	<mark>8–21</mark>
MiniSD interface connections	<mark>8–22</mark>
Charger connector and charging interface connections & electrical characteristics	<mark>8–23</mark>
Battery interface electrical characteristics	<mark>8–24</mark>
Internal interfaces	8–24
I2C	<mark>8–24</mark>
Keyboard interface electrical characteristics	<mark>8–24</mark>
Display connector and interface connections	8–25
Back-up battery interface electrical characteristics	<mark>8–26</mark>
Frequency mappings	8–27
GSM850 frequencies	<mark>8–27</mark>
EGSM900 frequencies	<mark>8–28</mark>
GSM1800 frequencies	8–29
GSM1900 frequencies	<mark>8–30</mark>

List of Tables

Table 14 Battery interface connections	8–15
Table 15 ALS resistor values	8–16
Table 16 Charging interface connections	
Table 17 Charging IF electrical characteristics	8–23
Table 18 Battery IF electrical characteristics	
Table 19 Back-up battery connections	
Table 20 Back-up battery electrical characteristics	
······	

List of Figures

Figure 52 System level block diagram	8– <mark>6</mark>
Figure 53 Power distribution diagram	8– <u>9</u>
Figure 54 BT-RAP connection	8–11
Figure 55 MiniSD contact area & pin order	8–14
Figure 56 Battery pin order	8–15
Figure 57 ALS HW implementation	<mark>8–16</mark>
Figure 58 E-mail LED implementation	8–17
Figure 59 Audio block diagram	8–18
Figure 60 Internal microphone passive circuitry	8– <u>18</u>
Figure 61 Internal earpiece circuitry	8–19
Figure 62 Internal speaker circuitry	8–19
Figure 63 Vibra circuitry	8–20
Figure 64 Charger connector	8-23

Baseband description

System module block diagram

The device is a quad-band GSM mono-block product with full QWERTY keyboard. It is based on Series 60 UI Style on the Symbian Operating System (SOS) release (version 9.1).

The device has two antennas; Internal antenna for cellular quad band GSM and BT antenna.

Bluetooth module has its own antenna. System calculations assume 15dB antenna isolation between Bluetooth and cellular GSM antenna.

Architecture overview

The device is a monoblock quadband GSM/EDGE 850/900/1800/1900 handportable phone running on Symbian series 60 release 3.0.

Product segment is a Smart phone.

The device baseband is single processor architecture based on CeMEnt G3.1S engine (CeBBo1GSM BB + Ritsa 4.5 RF).

The baseband includes following HW-blocks:

- RAP, GSM EDGE BaseBand ASIC (ARM926EJ-S MCU, Lead3 PH3 DSP)
- N2200, primary Energy Management ASIC
- N2300, secondary Energy Management ASIC
- T-combo memory, 256Mbit NOR FLASH + 256Mbit DDR-SDRAM + 1Gbit Mux-one Nand combo memory
- Audio (Microphone, Speaker, IHF and external audio)
- EL keyboard backlightning
- Ambient light sensor
- Bottom Connectors (Mini USB-B + 2.5mm Headset Jack + Dynamo DC jack)
- SIM Interface
- BB-RF Interface
- Bluetooth BTPerf 2.3 (BT 2.0 + EDR)
- UI (Oxford QVGA LCD, QWERTY keyboard)
- IR Interface (IrDA, 115.2kbit/s)
- Mini SD Interface (hot swappable)

RF block includes:

- N7505 AHNE RF ASIC (Quad-band GSM functionality based on Ritsa 4.5 engine.)
- N7520 front end module (PA and antenna switch)
- G7500 VCO and G7501 VCXO (38.4MHz)

Figure 52 System level block diagram

Baseband functional description

Digital baseband is single processor architecture. It consists of RAP, EM ASIC (N2200), EM ASIC (N2300) and memories as the core. RAP is a GSM EDGE chip with lots of peripheral features. Supported cellular protocols in RAP are GSM (minimum EDGE class 10, GPRS phase2). In general RAP consists of three separate parts. The first part is processor subsystem (PSS) that includes both MCU and DSP processors and related functions. The second part is MCU peripherals that are peripherals mainly controlled by MCU. The third one is DSP peripherals that are peripherals mainly controlled by MCU. The third one is DSP peripherals that are peripherals mainly controlled by MCU. The third one is DSP peripherals that are peripherals mainly controlled by DSP. N2200 is an audio ASIC including also energy management (EM) functions. With second EM ASIC N2300, it covers the analog audio and energy management function. N2200 is also the device that handles the power-up and power-down routines of the system. During the times when the digital BB is alive N2200 handles a variety of tasks that can not be accomplished elsewhere due to voltage requirements, noise etc. N2300 power IC is intended for energy management control, supply voltage generation and charge control of mobile phone. N2300 has a step down type (buck) programmable switch mode regulator for digital core supply generation, up (boost) switch mode regulator with current control for led supply, charge control circuitry with integrated switch, level shifters and regulator for FBUS/ USB-OTG, and digital circuitry including registers. Stacked triple combo memory (RAM, Nor, Nand in one package) includes 256Mbit DDR SDRAM , 256Mbit NOR Flash and 1Gbit Mux-One Nand.

Absolute maximum ratings

Signal	Min	Nom	Мах	Uni t	Notes
Battery voltage (idle)	-0.3		5.2	V	Battery voltage maximum value is specified during charging is active

Signal	Min	Nom	Мах	Uni t	Notes
Battery voltage (Call)	+3.2		+4.8	V	Battery voltage maximum value is specified during charging is active
Charger input voltage	-0.3		+16	V	

Phone modes of operation

Mode	Description
NO_SUPPLY	(dead) mode means that the main battery is not present or its voltage is too low (below N2200 master reset threshold) and that the back-up battery voltage is too low.
BACK_UP	The main battery is not present or its voltage is too low but back-up battery voltage is adequate and the 32 kHz oscillator is running (RTC is on).
PWR_OFF	In this mode (warm), the main battery is present and its voltage is over N2200 master reset threshold. All regulators are disabled, PurX is on low state, the RTC is on and the oscillator is on. PWR_OFF (cold) mode is almost the same as PWR_OFF (warm), but the RTC and the oscillator are off.
RESET	RESET mode is a synonym for start-up sequence. In this mode certain regulators are enabled and after they and RFClk have stabilized, the system reset (PurX) is released and PWR_ON mode entered. RESET mode uses 32 kHz clock to count the REST mode delay (typically 16 ms).
DEEP SLEEP	Deep sleep mode is entered only from Pwr_on mode with the aid of sw when the system's activity is low. At deep sleep, VCTCXO is powering off. System is running with the sleep clock. Regulators are in sleep mode.
FLASHING	FLASHING mode is for SW downloading.

Voltage limits

Parameter	Description	Value
VMSTR	Master reset threshold (N2200)	2.2V (typ.)
VMSTR+	Master reset threshold level, rising (N2300)	2.1V (typ.)
VMSTR-	Master reset threshold level, falling (N2300)	1.9V (typ.)
VCOFF+	Hardware cutoff (rising)	2.9V (typ.)

Parameter	Description	Value
VCOFF-	Hardware cutoff (falling)	2.6V (typ.)
SWCOFF	SW cutoff limit	~3.2V

The master reset threshold controls the internal reset of N2200 / (N2300). If battery voltage is above VMSTR, N2300's charging control logic is alive. Also, RTC is active and supplied from the main battery. Above VMSTR, N2300 allows the system to be powered on although this may not succeed due to voltage drops during start up. SW can also consider battery voltage too low for operation and power down the system.

Power key

The system boots up when power key is pressed (adequate battery voltage, VBAT, present).

Power down can be initiated by pressing the power key again (the system is powered down with the aid of SW).

Operation modes

There are four different power up possibilities to switch power on:

- Power key is pressed
- Charger is connected
- A pulse is supplied to MBUS line (Clk)
- Internal power up with Real Time Clock alarm.

Power is not switched on by supplying battery voltage as in DCT4 generations

It should be noted that system behavior depends on the type of device the engine is in. The difference is mainly in the power key concept, basically:

- The power key controls the system power ON/OFF
- The system boots up always when not empty battery is connected. The power key controls only the CMT functionality. PDA functions are always available
- To the EM ASIC's functionality there is no difference how the power key is connected (the power up and down signaling and timings are the same)

Power distribution

Figure 53 Power distribution diagram

System power-up

Power up procedure starts when the user presses power key (option 1) or when (not empty) battery is attached (option 2). In addition, some other triggers may start the system.

Power down procedure

Controlled powering off is done with the aid of SW when the user requests it or when the battery voltage is falling too low. Uncontrolled powering off happens for example when battery is suddenly removed.

Clocking scheme

The main system clock is a small signal sine wave created in the RF-section of the engine with Voltage Controlled, Temperature Compensated, crystal oscillator (VCTCXO). The delivered frequency is 38.4MHz. RAP has its own sleep mode in which use low accuracy, low frequency sleep clock instead of RF clock. In deep sleep, ASIC is sleep mode and therefore VCTCXO can be switched off (VCTCXO is a significant power consumer). In deep sleep also the core voltage is decreased.

Bluetooth

The device uses BTH Perf2.3 solution. The Bluetooth is V 2.0 + EDR. The Bluetooth module is implemented by using CSR's BC4-ROM. BlueCore-4 ROM is a single chip radio and baseband IC for Bluetooth 2.4 GHz systems. In BB5.0 ,BT interface has been designed so that it allows attaching BT modules from different vendors. The interface consists of UART interface and PCM interface for audio.

Figure 54 BT-RAP connection

IrDA

IrDA specifies a reliable, fully digital peer-to-peer data link between IrDA units at data rates from 9600 bits/ s to 115 kbit/s. The link is based on the serial transmission of data as pulses of infra red light at the wave length of 870nm and angles of +-15degrees at the range 0 - 50 to 100 cm. The transmission is not omnidirectional but focused and only reaches a peer at a limited line-of-sight distance from the transmitter thus not disturbing any other units in the neighbourhood.

IR communication is half-duplex e.g. the IR receiver sees its own transmission, and the IR interface is either transmitting or receiving, but not both at once.

USB

USB (Universal Serial Bus) provides a wired connectivity between a USB host PC and peripheral devices.

USB is a differential serial bus for USB devices. USB controller supports USB specification revision 2.0 with full speed USB (12 Mbps). The device is connected to the USB host through the system connector. The USB bus is hot plugged capable, which means that USB devices may be plugged in/out at any time.

SIM card

The device SIM interface supports both1.8V and 3V technology smart cards.

The power is not allowed to be supplied to cards until the power contacts to battery are properly connected.

RF-BB interface

In BB-RF interface there are 19 signal pins between RAP and cellular RF.

Between EM (N2200) and cellular RF there are 8 pins + VBAT. RF is controlled directly by RAP and N2200. Digital control signals, such as RFBus and reset signals, are taken from RAP and analog control signals, such as AFC and TxC, are taken from EM ASIC (N2200).

RFBUS is similar control bus than CBUS and DBUS, but it is only used as controlling interface between RF and BaseBand (RAP). RAP controls AFC and TxC signals via TxCData bus and RF regulator control is done via CBUS.

Analog Rx and Tx signals are connected to/from RAP that includes RF converters for this purpose. The TxC serial bus interface is a one-way bus, which is used to transfer data from RAP3G to the N2200 ASIC TXC DACs.

These DACs are used to control the RF power amplifiers. The TXC bus includes TxCCtrl pin, which is used to select the EM ASIC (N2200) DAC, the data is written to. In case the TxCCtrl is in low state, the data is written to the DAC1 and in case the TxCCtrl is in high state, the data is written to DAC2.

The TxC bus clock frequency is programmable but the frequency to be used in CeBBo1 is 19.2 MHz and for RFBUS the frequency used is 9.6 MHz.

FBUS

USB and FBUS have multiplexed interface between EM ASIC (2300) and RAP.

ACI interface

The ACI (Accessory Control Interface) is a point-to-point, bi-directional, single line serial bus.

It has two main features: the insertion and removal detection of an accessory device and acting as a data bus between phone and accessory, intended for control purposes. A third function of ACI is to identify and authenticate the accessory.

SIM interface

The device has one SIM (Subscriber Identification Module) interface. It is only accessible if battery is removed. The SIM interface consists of an internal interface between RAP and EM ASIC (N2200), and of an external interface between N2200 and SIM contacts.

The EM ASIC SIM1 interface supports both 1.8 V and 3.0 V SIM cards. The SIM interface voltage is first 1.8 V when the SIM card is inserted, and if the card does not response to the ATR a 3 V interface voltage is used.

MiniSD interface

In the RAP the MMC/SD interface is multiplexed with NAND Flash and SIM2 interfaces.

Battery interface

The battery interface supports a 3-pole battery interface. The interface consists of three connectors: VBAT, BSI and GND.

The BSI line is used to recognize the battery capacity by a battery internal pull down resistor.

Figure 56 Battery pin order

Table 14 Battery interface connections

Pin	Signal	I/0	Engine connection		Notes
1	VBAT	->	EM ASIC N2200	VBAT	Battery voltage
2	BSI	->	EM ASIC N2200	BSI	Battery size indication (fixed resistor inside the battery pack)
3	GND		GND		Ground

Battery temperature is estimated by measuring separate battery temperature NTC via the BTEMP line, which is located on the transceiver PWB.

For service purposes, the device SW can be forced into local mode by using pull down resistors connected to the BSI line.

User interface

Display interface

The device supports Oxford QVGA 2.8" TFT display with 320 x 240 resolution and 24bit colors. It uses 8-bit display interface.

Keyboard

The device uses external COP8 micro controller to handle engine & qwerty keyboard matrix. The communication between COP8 and RAP is handled by I2C bus.

Display and keyboard backlight

The device has one LED Driver (SMPS) that is used to drive six display LEDs.

Display LEDs are connected in to two three LED series. Current adjustment of the driver is done from the display LED branch, and keyboard current also depends on the display brightness. In a typical use case, keyboard LEDs are turned ON only in dark ambient lighting conditions.

The keyboard backlight is made with electroluminance. The device has discrete EL-driver, which provide backlight for keyboard.

ALS interface

Ambient Light Sensor (ALS) is located in the upper part of the phone. It consists of the following components:

- lightguide (part of the front cover)
- phototransistor (V4400) + resistor (R4401)
- NTC + resistors (R4400, R4402, R4403)

• EM ASIC (N2200)

Information on ambient lighting is used to control the backlights of the phone:

- Keypad lighting is switched on only when the environment is dark / dim
- Display backlights are dimmed, when the environment is dark / dim

The ambient light sensor itself is a photo transistor, which is temperature-compensated by an external NTC resistor. N2200 reads the light sensor (LS) and temperature (LST) results.

ALS calibration is not possible in the service points. ALS is serviced by replacing faulty phototransistors.

Figure 57 ALS HW implementation

Table 15 ALS resistor values

Symbol	R1	R2	R3	R4	R5	R6	R7	NTC-res
		15	30	50	470	100	470	47
Value	5 k0hm	k0hm	k0hm	k0hm	k0hm	kohm	kohm	k0hm

E-Mail LED

The device has E-Mail indicator LED.

Audio concept

Audio HW architecture

In BB5.0, the digital functions of audio are integrated into RAP and analogue functions into EM ASIC N2200. Audio codec supports 48 kHz and 44.1 kHz sampling rates in addition to 40 kHz, which provides full 20 kHz audio bandwidth (near CD quality) in Rx path.

Figure 59 Audio block diagram

Internal microphone

Internal microphone is used for HandPortable (HP) and Internal HandsFree (IHF) call modes.

An analogue electret microphone is connected to Retu ASIC's Mic1P and Mic1N is connected ground near Retu.

Internal earpiece

The internal earpiece is used in the HandPortable (HP) call mode. A dynamic 7x11 mm earpiece capsule is connected to N2200 ASIC's differential outputs EarP and EarN.

Internal speaker

The internal speaker is used in Internal HandsFree (IHF) call mode.

A dynamic 20 mm speaker is connected to N2200 ASIC's outputs HFSpP and HFSpN.

The IHF amplifier integrated in EM ASIC N2200 is a Digital Pulse Modulated Amplifier (DPMA).

Vibra circuitry

Vibra is used for vibra-alarm function.

The vibra motor is connected to the N2200 ASIC VibraP and VibraN Pulse Width Modulated (PWM) outputs.

rigule os vibla circi

Baseband technical specifications

External interfaces

Name of Connection	Connector reference
USB	X2001
Charger	X2000
Headset	X2002
SIM	X2700
MiniSD	X5200
Battery connector	X2070

USB IF electrical characteristics

Description	Parameter	Min	Мах	Unit	Notes
Absolute maximum voltage on D+ and D-	V _{D+/D-}	-1	4.6	V	USB specification revision 2.0
Supply voltage	VBUS	4.4	5.25	V	
Supply current:					
Functioning	I _{VBUS}		100	mA	
Suspended	I _{VBUS}		500	uA	
Unconfigured	I _{VBUS}		100	mA	
High-level input voltage:				V	
High (driven)	V _{IH}	2			
High (floating)	V _{IHZ}	2.7	3.6		
Low-level input voltage	V _{IL}		0.8	V	

Description	Parameter	Min	Мах	Unit	Notes
Differential input sensitivity	V _{DI}	0.2		V	(D+) - (D-)
Differential input voltage range	V _{CM}	0.8	2.5	V	Included VDI range
Low-level output voltage	V _{OL}	0	0.3	V	
High-level output voltage (driven)	V _{OH}	2.8	3.6	V	
Output signal crossover voltage	V _{CRS}	1.3	2	V	

FBUS interface electrical characteristics (between RAP and N2300)

Description	Parameter	Min	Мах	Unit
High-level input voltage	V _{IH}	0.7 x V _{DDSHV2}	V _{DDSHV2}	V
Low-level Input voltage	V _{IL}	0	0.3 x V _{DDSHV2}	V
High-level output voltage	V _{OH}	0.8 x V _{DDSHV2}	V _{DDSHV2}	V
Low-level output voltage	V _{OL}	0	0.22 x V _{DDSHV2}	V
Rise/fall time	tR/tF	0	25	ns
	(VDDSHV2 :	= 1.8V)		

SIM IF connections

Pin	Signal	I/O	Engine connection		Notes
C1	VSIM	Out	N2200	VSIM1	Supply voltage to SIM card, 1.8 V or 3.0 V.
(2	SIMRST	Out	N2200	SIM1Rst	Reset signal to SIM card
СЗ	SIMCLK	Out	N2200	SIM1ClkC	Clock signal to SIM card
С5	GND	-	GND		Ground
С7	SIMDATA	In/Out	N2200	SIM1DaC	Data input / output

MiniSD interface connections

Signal	Signal	Signal Properties			Descriptio
name/ RAP3G	Card	Direction -	- Levels Fr Resolution	eq./Timing	n / Notes
GenIO 09 or	MMCCmd	<>	0-1.8 V / 0-3.6V		SD Comman d
Genio 12	MMCCIIk		0101/	May 2E	
or GenIO 53	MMCCIK	1	0-1.8 V / 0-3.6V	MHZ	SD CIOCK
GenIO 08 or	MMCDa	<>	0-1.8 V / 0-3.6V		SD Data bit 0
GenIO 55					
GenIO 07	MMCLSSh utDn	>	0-1.8 V / 0-3.6V		Level shifter shutdow n
GenIO 10	SDDa2	<	0-1.8 V /		Data bit 1
		>	0-3.6V		
GenIO 14	SDDa3	<	0-1.8 V /		Data bit 2
		>	0-3.6V		
GenIO 15	SDDa4	<	0-1.8 V /		Data bit 3
		>	0-3.6V		
GenIO 12 or GenIO 65	MMCCmd Dir	>	0-1.8 V / 0-3.6V		Comman d Dir
GenIO 11 or GenIO 66	MMCDaDir	>	0-1.8 V / 0-3.6V		Data bit 0 Dir
GenIO 03	SDDaDir2	>	0-1.8 V / 0-3.6V		Data bit 1 Dir
GenIO 04	SDDaDir3	>	0-1.8 V / 0-3.6V		Data bit 2 Dir
GenIO 05	SDDaDir4	>	0-1.8 V / 0-3.6V		Data bit 3 Dir
GenIO 46	MMCDet	<	0-1.8 V / 0-3.6V		Card insert/ removal detection

Signal name/ RAP3G	Signal name/ SD Card	Signal Properties Direction Levels Freq./Timing Resolution		Descriptio n / Notes	
GenIO 06	SD Write Protect	<	0-1.8 V / 0-3.6V		Write protect detection , used only with normal size SD Card
GenIO 02	MMCFBClk	<	0-1.8 V / 0-3.6V		Clock Feedback

Charger connector and charging interface connections & electrical characteristics

Figure 64 Charger connector

Table 16 Charging interface connections

Pin	Signal	I/0	Engine connection		Notes
1	Vchar	In	N2300	VCharIn1, 2	Charging voltage / charger detection, Center pin
2	Charge GND		Ground		Charger ground

Table 17 Charging IF electrical characteristics

Description	Parameter	Min	Мах	Unit	Notes
Vchar	V Charge	0	9	V	Center pin
Vchar	I Charge		0.85	А	Center pin
Charge GND			0.85	Α	

Description	Parameter	Min	Мах	Unit	Notes
Threshold for charging, rising (N2300)	V _{MSTR+}	2.1		V	Typical value
Threshold for charging, falling (N2300)	V _{MSTR-}	1.9		V	Typical value

Battery interface electrical characteristics

Table 18 Battery IF electrical characteristics

Description	Parameter	Max	Unit
Operation voltage	V _{IN}	4.23	VDC
Current rating	I _{IN}	0.9	А

Internal interfaces

Name of Connection	Connector reference
Joystick connector	X4500
Display	X4400
ALS	V4400
Vibra	M2100
Microphone	B2100
Earpiece	B2101
IHF speaker	B2102

I2C

I2C is an Inter IC bus and aimed for slow control of peripherals.

The device uses I2C to interconnect QWERTY keyboard controller to RAP.

Keyboard interface electrical characteristics

Description	Parameter	Min	Тур	Мах	Unit	Notes
High-level input voltage	V _{IH}	0.65* V _{DDS}	V _{DDS}	0.3+ V _{DDS}	V	Row
Low-level input voltage	V _{IL}	-0.3	0	0.35* V _{DDS}	V	Row
High-level output voltage	V _{OH}	1.62	V _{DDS}	1.98	V	Column
Low-level output voltage	V _{OL}		0	0.45	V	Column

Description	Parameter	Min	Тур	Max	Unit	Notes
(VDDS = 1.8V)						

Display connector and interface connections

Connector (x4)

PIN#	Symbol	Symbol	PIN#
12	TE	RESX	13
11	D7	CSX	14
10	D5	D6	15
9	GND	D4	16
8	D3	D2	17
7	D1	GND	18
6	D/CX	DO	19
5	RDX	WRX	20
4	GND	GND	21
3	VDD	VDDI	22
2	V LED2(+)	V LED2(-)	23
1	V LED1(+)	V LED1(-)	24

Pin	Signal	I/O	Engine connection		Notes
1	V LED1 +	<-	N2301	VLEDout	N2301 is controlled by EM ASIC (N2300)
2	V LED2 +	<-	N2301	VLEDout	N2301 is controlled by EM ASIC (N2300)
3	VDD	<-	EM ASIC (N2200)	VAUX	Core Voltage
4	GND				
5	RDX	<-	RAP	Lcdrdx	Read Enable (active low)
6	D/CX	<-	RAP	Lcdrmd	Data/ Command select
					(high = data
					low = command)
7	D1	<->	RAP	Lcdda1	Data
8	D3	<->	RAP	Lcdda3	Data
9	GND				

Pin	Signal	I/0	Engine co	onnection	Notes
10	D5	<->	RAP	Lcdda5	Data
11	D7	<->	RAP	Lcdda7	Data
12	TE	->	RAP	Те	Tearing Effect
13	RESX	<-	RAP	Gpio60	Reset (active low)
14	CSX	<-	RAP	Lcdsx	Chip Select (active low)
15	D6	<->	RAP	Lcdda6	Data
16	D4	<->	RAP	Lcdda4	Data
17	D2	<->	RAP	Lcdda2	Data
18	GND				
19	DO	<->	RAP	Lcdda0	Data
20	WRX	->	RAP	Lcdwrx	Write Enable (active low)
21	GND				
22	VDDI	<-	EM ASIC (N2200)	VIO	Interface voltage
23	V LED2 -	->	R2303	SETCURR1	Resistor
24	V LED1 -	->	R2303	SETCURR1	Resistor

Back-up battery interface electrical characteristics

Table 19 Back-up battery connections

Pin name	I/0	Connection	Notes
L2207,	->	N2200,	Back-up battery G2200 is
VBack		VBack	connected to N2200 via coil

Table 20 Back-up battery electrical characteristics

Description	Parameter	Min	Тур	Мах	Unit
Back-Up Battery Voltage	Vback	0	2.5	2.7	V

Frequency mappings

GSM850 frequencies

СН	тх	RX	VCO TX	VCO RX	СН	тх	RX	VCO TX	VCO RX	СН	тх	RX	VCO TX	VCO RX
128	824.2	869.2	3296.8	3476.8	170	832.6	877.6	3330.4	3510.4	212	841.0	886.0	3364.0	3544.0
129	824.4	869.4	3297.6	3477.6	171	832.8	877.8	3331.2	3511.2	213	841.2	886.2	3364.8	3544.8
130	824.6	869.6	3298.4	3478.4	172	833.0	878.0	3332.0	3512.0	214	841.4	886.4	3365.6	3545.6
131	824.8	869.8	3299.2	3479.2	173	833.2	878.2	3332.8	3512.8	215	841.6	886.6	3366.4	3546.4
132	825.0	870.0	3300.0	3480.0	174	833.4	878.4	3333.6	3513.6	216	841.8	886.8	3367.2	3547.2
133	825.2	870.2	3300.8	3480.8	175	833.6	878.6	3334.4	3514.4	217	842.0	887.0	3368.0	3548.0
134	825.4	870.4	3301.6	3481.6	176	833.8	878.8	3335.2	3515.2	218	842.2	887.2	3368.8	3548.8
135	825.6	870.6	3302.4	3482.4	177	834.0	879.0	3336.0	3516.0	219	842.4	887.4	3369.6	3549.6
136	825.8	870.8	3303.2	3483.2	178	834.2	879.2	3336.8	3516.8	220	842.6	887.6	3370.4	3550.4
137	826.0	871.0	3304.0	3484.0	179	834.4	879.4	3337.6	3517.6	221	842.8	887.8	3371.2	3551.2
138	826.2	871.2	3304.8	3484.8	180	834.6	879.6	3338.4	3518.4	222	843.0	888.0	3372.0	3552.0
139	826.4	871.4	3305.6	3485.6	181	834.8	879.8	3339.2	3519.2	223	843.2	888.2	3372.8	3552.8
140	826.6	871.6	3306.4	3486.4	182	835.0	880.0	3340.0	3520.0	224	843.4	888.4	3373.6	3553.6
141	826.8	871.8	3307.2	3487.2	183	835.2	880.2	3340.8	3520.8	225	843.6	888.6	3374.4	3554.4
142	827.0	872.0	3308.0	3488.0	184	835.4	880.4	3341.6	3521.6	226	843.8	888.8	3375.2	3555.2
143	827.2	872.2	3308.8	3488.8	185	835.6	880.6	3342.4	3522.4	227	844.0	889.0	3376.0	3556.0
144	827.4	872.4	3309.6	3489.6	186	835.8	880.8	3343.2	3523.2	228	844.2	889.2	3376.8	3556.8
145	827.6	872.6	3310.4	3490.4	187	836.0	881.0	3344.0	3524.0	229	844.4	889.4	3377.6	3557.6
146	827.8	872.8	3311.2	3491.2	188	836.2	881.2	3344.8	3524.8	230	844.6	889.6	3378.4	3558.4
147	828.0	873.0	3312.0	3492.0	189	836.4	881.4	3345.6	3525.6	231	844.8	889.8	3379.2	3559.2
148	828.2	873.2	3312.8	3492.8	190	836.6	881.6	3346.4	3526.4	232	845.0	890.0	3380.0	3560.0
149	828.4	873.4	3313.6	3493.6	191	836.8	881.8	3347.2	3527.2	233	845.2	890.2	3380.8	3560.8
150	828.6	873.6	3314.4	3494.4	192	837.0	882.0	3348.0	3528.0	234	845.4	890.4	3381.6	3561.6
151	828.8	873.8	3315.2	3495.2	193	837.2	882.2	3348.8	3528.8	235	845.6	890.6	3382.4	3562.4
152	829.0	874.0	3316.0	3496.0	194	837.4	882.4	3349.6	3529.6	236	845.8	890.8	3383.2	3563.2
153	829.2	874.2	3316.8	3496.8	195	837.6	882.6	3350.4	3530.4	237	846.0	891.0	3384.0	3564.0
154	829.4	874.4	3317.6	3497.6	196	837.8	882.8	3351.2	3531.2	238	846.2	891.2	3384.8	3564.8
155	829.6	874.6	3318.4	3498.4	197	838.0	883.0	3352.0	3532.0	239	846.4	891.4	3385.6	3565.6
156	829.8	874.8	3319.2	3499.2	198	838.2	883.2	3352.8	3532.8	240	846.6	891.6	3386.4	3566.4
157	830.0	875.0	3320.0	3500.0	199	838.4	883.4	3353.6	3533.6	241	846.8	891.8	3387.2	3567.2
158	830.2	875.2	3320.8	3500.8	200	838.6	883.6	3354.4	3534.4	242	847.0	892.0	3388.0	3568.0
159	830.4	875.4	3321.6	3501.6	201	838.8	883.8	3355.2	3535.2	243	847.2	892.2	3388.8	3568.8
160	830.6	875.6	3322.4	3502.4	202	839.0	884.0	3356.0	3536.0	244	847.4	892.4	3389.6	3569.6
161	830.8	875.8	3323.2	3503.2	203	839.2	884.2	3356.8	3536.8	245	847.6	892.6	3390.4	3570.4
162	831.0	876.0	3324.0	3504.0	204	839.4	884.4	3357.6	3537.6	246	847.8	892.8	3391.2	3571.2
163	831.2	876.2	3324.8	3504.8	205	839.6	884.6	3358.4	3538.4	247	848.0	893.0	3392.0	3572.0
164	831.4	876.4	3325.6	3505.6	206	839.8	884.8	3359.2	3539.2	248	848.2	893.2	3392.8	3572.8
165	831.6	876.6	3326.4	3506.4	207	840.0	885.0	3360.0	3540.0	249	848.4	893.4	3393.6	3573.6
166	831.8	876.8	3327.2	3507.2	208	840.2	885.2	3360.8	3540.8	250	848.6	893.6	3394.4	3574.4
167	832.0	877.0	3328.0	3508.0	209	840.4	885.4	3361.6	3541.6	251	848.8	893.8	3395.2	3575.2

EGSM900 frequencies

СН	ТΧ	RX	VCO TX	VCO RX	СН	ТΧ	RX	VCO TX	VCO RX	СН	ТΧ	RX	VCO TX	VCO RX
975	880,2	925,2	3520,8	3700,8	1	890,2	935,2	3560,8	3740,8	63	902,6	947,6	3610,4	3790,4
976	880,4	925,4	3521,6	3701,6	2	890,4	935,4	3561,6	3741,6	64	902,8	947,8	3611,2	3791,2
977	880,6	925,6	3522,4	3702,4	3	890,6	935,6	3562,4	3742,4	65	903,0	948,0	3612,0	3792,0
978	880.8	925.8	3523.2	3703.2	4	890.8	935.8	3563.2	3743.2	66	903.2	948.2	3612.8	3792.8
979	881.0	926.0	3524.0	3704.0	5	891.0	936.0	3564.0	3744.0	67	903.4	948.4	3613.6	3793.6
980	881.2	926.2	3524.8	3704.8	6	891.2	936.2	3564.8	3744.8	68	903.6	948.6	3614.4	3794.4
981	881.4	926.4	3525.6	3705.6	7	891.4	936.4	3565.6	3745.6	69	903.8	948.8	3615.2	3795.2
982	881.6	926.6	3526.4	3706.4	8	891.6	936.6	3566.4	3746.4	70	904.0	949.0	3616.0	3796.0
983	881.8	926.8	3527.2	3707.2	9	891.8	936.8	3567.2	3747.2	71	904.2	949.2	3616.8	3796.8
984	882.0	927.0	3528.0	3708.0	10	892.0	937.0	3568.0	3748.0	72	904.4	949.4	3617.6	3797.6
985	882.2	927.2	3528.8	3708.8	11	892.2	937.2	3568.8	3748.8	73	904.6	949.6	3618.4	3798.4
986	882.4	927.4	3529.6	3709.6	12	892.4	937.4	3569.6	3749.6	74	904.8	949.8	3619.2	3799.2
987	882.6	927.6	3530.4	3710.4	13	892.6	937.6	3570.4	3750.4	75	905.0	950.0	3620.0	3800.0
988	882.8	927.8	3531.2	3711.2	14	892.8	937.8	3571.2	3751.2	76	905.2	950.2	3620.8	3800.8
989	883.0	928.0	3532.0	3712.0	15	893.0	938.0	3572.0	3752.0	77	905.4	950.4	3621.6	3801.6
990	883.2	928.2	3532.8	3712.8	16	893.2	938.2	3572.8	3752.8	78	905.6	950.6	3622.4	3802.4
001	883.4	028.4	3533.6	3713.6	17	803.4	038.4	3573.6	3753.6	70	905.8	950.8	3623.2	3803.2
002	883.6	920,4	3534.4	3714.4	18	803.6	038.6	3574.4	3754 4	80	905,0	950,0	3624.0	3804.0
992	803,0	020,0	3535.0	3715.0	10	803.0	030,0	3575.0	3755.0	01	006,0	051,0	3624,0	3804.0
993	894.0	920,0	3536.0	3716.0	20	804.0	930,0	3576.0	3756.0	82	900,2	951,2	3625.0	3805.6
994	894.0	929,0	3536,0	3716.0	20	804.0	939,0	3576.0	3756.0	02	906,4	951,4	3626.4	3806.4
995	004,2	929,2	3535,8	2747.0	21	094,2	939,2	3570,8	3757.0	03	900,6	951,0	3627.0	2007.0
996	004,4	929,4	3537,6	3710 4	22	094,4	939,4	3570 4	3750 4	04	906,8	951,8	3626.0	3007,2
997	004,6	929,6	3530,4	3710,4	23	094,6	939,6	35/0,4	3750,4	00	907,0	952,0	3628,0	3000,0
998	884,8	929,8	3539,2	3719,2	24	894,8	939,8	3579,2	3759,2	80	907,2	952,2	3628,8	3808,8
999	005,0	930,0	3540,0	3720,0	25	095,0	940,0	3560,0	3760,0	0/	907,4	952,4	3629,6	3009,6
1000	005,2	930,2	3540,0	3720,0	20	095,2	940,2	3500,0	3760,0	00	907,6	952,6	3630,4	3010,4
1001	885,4	930,4	3541,6	3721,6	21	895,4	940,4	3581,6	3761,6	89	907,8	952,8	3631,2	3811,2
1002	000,0	930,6	3542,4	3722,4	20	095,6	940,6	3562,4	3762,4	90	908,0	953,0	3632,0	3012,0
1003	885,8	930,8	3543,2	3723,2	29	895,8	940,8	3583,2	3763,2	91	908,2	953,2	3632,8	3812,8
1004	000,0	931,0	3544,0	3724,0	30	896,0	941,0	3584,0	3764,0	92	908,4	953,4	3033,0	3013,0
1005	886,2	931,2	3544,8	3724,8	31	896,2	941,2	3584,8	3764,8	93	908,6	953,6	3634,4	3814,4
1006	886,4	931,4	3545,6	3725,6	32	896,4	941,4	3585,6	3765,6	94	908,8	953,8	3635,2	3815,2
1007	886,6	931,6	3546,4	3726,4	33	896,6	941,6	3586,4	3766,4	95	909,0	954,0	3636,0	3816,0
1008	886,8	931,8	3547,2	3727,2	34	896,8	941,8	3587,2	3767,2	96	909,2	954,2	3636,8	3816,8
1009	887,0	932,0	3548,0	3728,0	35	897,0	942,0	3588,0	3768,0	97	909,4	954,4	3637,6	3817,6
1010	887,2	932,2	3548,8	3728,8	36	897,2	942,2	3588,8	3768,8	98	909,6	954,6	3638,4	3818,4
1011	887,4	932,4	3549,6	3729,6	37	897,4	942,4	3589,6	3769,6	99	909,8	954,8	3639,2	3819,2
1012	887,6	932,6	3550,4	3730,4	38	897,6	942,6	3590,4	3770,4	100	910,0	955,0	3640,0	3820,0
1013	887,8	932,8	3551,2	3731,2	39	897,8	942,8	3591,2	3771,2	101	910,2	955,2	3640,8	3820,8
1014	888,0	933,0	3552,0	3732,0	40	898,0	943,0	3592,0	3772,0	102	910,4	955,4	3641,6	3821,6
1015	888,2	933,2	3552,8	3732,8	41	898,2	943,2	3592,8	3772,8	103	910,6	955,6	3642,4	3822,4
1016	888,4	933,4	3553,6	3733,6	42	898,4	943,4	3593,6	3773,6	104	910,8	955,8	3643,2	3823,2
1017	888,6	933,6	3554,4	3734,4	43	898,6	943,6	3594,4	3774,4	105	911,0	956,0	3644,0	3824,0
1018	888,8	933,8	3555,2	3735,2	44	898,8	943,8	3595,2	3775,2	106	911,2	956,2	3644,8	3824,8
1019	889,0	934,0	3556,0	3736,0	45	899,0	944,0	3596,0	3776,0	107	911,4	956,4	3645,6	3825,6
1020	889,2	934,2	3556,8	3736,8	46	899,2	944,2	3596,8	3776,8	108	911,6	956,6	3646,4	3826,4
1021	889,4	934,4	3557,6	3737,6	47	899,4	944,4	3597,6	3777,6	109	911,8	956,8	3647,2	3827,2
1022	889,6	934,6	3558,4	3738,4	48	899,6	944,6	3598,4	3778,4	110	912,0	957,0	3648,0	3828,0
1023	889,8	934,8	3559,2	3739,2	49	899,8	944,8	3599,2	3779,2	111	912,2	957,2	3648,8	3828,8
0	890,0	935,0	3560,0	3740,0	50	900,0	945,0	3600,0	3780,0	112	912,4	957,4	3649,6	3829,6
					51	900,2	945,2	3600,8	3780,8	113	912,6	957,6	3650,4	3830,4
					52	900,4	945,4	3601,6	3781,6	114	912,8	957,8	3651,2	3831,2
					53	900,6	945,6	3602,4	3782,4	115	913,0	958,0	3652,0	3832,0
					54	900,8	945,8	3603,2	3783,2	116	913,2	958,2	3652,8	3832,8
					55	901,0	946,0	3604,0	3784,0	117	913,4	958,4	3653,6	3833,6
					56	901,2	946,2	3604,8	3784,8	118	913,6	958,6	3654,4	3834,4
					57	901,4	946,4	3605,6	3785,6	119	913,8	958,8	3655,2	3835,2
					58	901,6	946,6	3606,4	3786,4	120	914,0	959,0	3656,0	3836,0
					59	901,8	946,8	3607,2	3787,2	121	914,2	959,2	3656,8	3836,8
					60	902,0	947,0	3608,0	3788,0	122	914,4	959,4	3657,6	3837,6
					61	902,2	947,2	3608,8	3788,8	123	914,6	959,6	3658,4	3838,4
					62	902,4	947,4	3609,6	3789,6	124	914,8	959,8	3659,2	3839,2

GSM1800 frequencies

Ch	Тx	Rx	VCO Tx	VCO Rx	Ch	Тx	Rx	VCO Tx	VCO Rx	Ch	Тx	Rx	VCO Tx	VCO Rx	Ch	Тx	Rx	VCO Tx	VCO Rx
512	1710.2	1805.2	3420.4	3610.4	606	1729.0	1824.0	3458.0	3648.0	700	1747.8	1842.8	3495.6	3685.6	793	1766.4	1861.4	3532.8	3722.8
513	1710.4	1805.4	3420.8	3610.8	607	1729.2	1824.2	3458.4	3648.4	701	1748.0	1843.0	3496.0	3686.0	794	1766.6	1861.6	3533.2	3723.2
514	1710.6	1805.6	3421.2	3611.2	608	1729.4	1824.4	3458.8	3648.8	702	1748.2	1843.2	3496.4	3686.4	795	1766.8	1861.8	3533.6	3723.6
515	1710.8	1805.8	3421.6	3611.6	609	1729.6	1824.6	3459.2	3649.2	703	1748.4	1843.4	3496.8	3686.8	796	1767.0	1862.0	3534.0	3724.0
516	1711.0	1806.0	3422.0	3612.0	610	1729.8	1824.8	3459.6	3649.6	704	1748.6	1843.6	3497.2	3687.2	797	1767.2	1862.2	3534.4	3724.4
517	1711.2	1806.2	3422.4	3612.4	611	1730.0	1825.0	3460.0	3650.0	705	1748.8	1843.8	3497.6	3687.6	798	1767.4	1862.4	3534.8	3724.8
518	1711.4	1806.4	3422.8	3612.8	612	1730.2	1825.2	3460.4	3650.4	706	1749.0	1844.0	3498.0	3688.0	799	1767.6	1862.6	3535.2	3725.2
519	1711.6	1806.6	3423.2	3613.2	613	1730.4	1825.4	3460.8	3650.8	707	1749.2	1844.2	3498.4	3688.4	800	1767.8	1862.8	3535.6	3725.6
520	1711.8	1806.8	3423.6	3613.6	614	1730.6	1825.6	3461.2	3651.2	708	1749.4	1844.4	3498.8	3688.8	801	1768.0	1863.0	3536.0	3726.0
521	1712.0	1807.0	3424.0	3614.0	615	1730.8	1825.8	3461.6	3651.6	709	1749.6	1844.6	3499.2	3689.2	802	1768.2	1863.2	3536.4	3726.4
522	1712.2	1807.2	3424.4	3614.4	616	1731.0	1826.0	3462.0	3652.0	710	1749.8	1844.8	3499.6	3689.6	803	1768.4	1863.4	3536.8	3726.8
523	1712.4	1807.4	3424.8	3614.8	617	1731.2	1826.2	3462.4	3652.4	711	1750.0	1845.0	3500.0	3690.0	804	1768.6	1863.6	3537.2	3727.2
524	1712.6	1807.6	3425.2	3615.2	618	1731.4	1826.4	3462.8	3652.8	712	1750.2	1845.2	3500.4	3690.4	805	1768.8	1863.8	3537.6	3727.6
525	1712.8	1807.8	3425.6	3615.6	619	1731.6	1826.6	3463.2	3653.2	713	1750.4	1845.4	3500.8	3690.8	806	1769.0	1864.0	3538.0	3728.0
526	1713.0	1808.0	3426.0	3616.0	620	1731.8	1826.8	3463.6	3653.6	714	1750.6	1845.6	3501.2	3691.2	807	1769.2	1864.2	3538.4	3728.4
527	1713.2	1808.2	3426.4	3616.4	621	1732.0	1827.0	3464.0	3654.0	715	1750.8	1845.8	3501.6	3691.6	808	1769.4	1864.4	3538.8	3728.8
528	1713.4	1808.4	3426.8	3616.8	622	1732.2	1827.2	3464.4	3654.4	716	1751.0	1846.0	3502.0	3692.0	809	1769.6	1864.6	3539.2	3729.2
529	1713.6	1808.6	3427.2	3617.2	623	1732.4	1827.4	3464.8	3654.8	717	1751.2	1846.2	3502.4	3692.4	810	1769.8	1864.8	3539.6	3729.6
530	1713.8	1808.8	3427.6	3617.6	624	1732.6	1827.6	3465.2	3655.2	718	1751.4	1846.4	3502.8	3692.8	811	1770.0	1865.0	3540.0	3730.0
531	1714.0	1809.0	3428.0	3618.0	625	1732.8	1827.8	3465.6	3655.6	719	1751.6	1846.6	3503.2	3693.2	812	1770.2	1865.2	3540.4	3730.4
532	1714.2	1809.2	3428.4	3618.4	626	1733.0	1828.0	3466.0	3656.0	720	1751.8	1846.8	3503.6	3693.6	813	1770.4	1865.4	3540.8	3730.8
533	1714.4	1809.4	3428.8	3618.8	627	1733.2	1828.2	3466.4	3656.4	721	1752.0	1847.0	3504.0	3694.0	814	1770.6	1865.6	3541.2	3731.2
534	1714.6	1809.6	3429.2	3619.2	628	1733.4	1828.4	3466.8	3656.8	722	1752.2	1847.2	3504.4	3694.4	815	1770.8	1865.8	3541.6	3731.6
535	1714.8	1809.8	3429.6	3619.6	629	1733.6	1828.6	3467.2	3657.2	723	1752.4	1847.4	3504.8	3694.8	816	1771.0	1866.0	3542.0	3732.0
536	1715.0	1810.0	3430.0	3620.0	630	1733.8	1828.8	3467.6	3657.6	724	1752.6	1847.6	3505.2	3695.2	817	1771.2	1866.2	3542.4	3732.4
537	1715.2	1810.2	3430.4	3620.4	631	1734.0	1829.0	3468.0	3658.0	725	1752.8	1847.8	3505.6	3695.6	818	1771.4	1866.4	3542.8	3732.8
538	1/15.4	1810.4	3430.8	3620.8	632	1/34.2	1829.2	3468.4	3658.4	726	1/53.0	1848.0	3506.0	3696.0	819	1/71.6	1866.6	3543.2	3733.2
539	1/15.6	1810.6	3431.2	3621.2	033	1/34.4	1829.4	3468.8	3058.8	727	1/53.2	1848.2	3506.4	3096.4	820	1771.8	1005.8	3543.6	3733.6
540	1/15.8	1810.8	3431.6	3621.6	034	1/34.6	1829.6	3469.2	3059.2	728	1/53.4	1048.4	3506.8	3096.8	021	1772.0	1007.0	3544.0	3734.0
541	1710.0	1011.0	3432.0	3022.0	035	1734.8	1029.8	3409.6	3059.6	720	1753.6	1048.6	3507.2	3097.2	022	1772.2	1007.2	3544.4	3734.4
542	1710.2	1011.2	3432.4	3622.4	030	1735.0	1830.0	3470.0	3640.4	730	1753.8	1048.8	3509.0	3097.0	023	1772.0	1007.4	3545.0	3734.8
543	1716.4	1011.4	3432.8	3022.8	03/	1795 -	1020.4	34/0.4	3000.4	731	1754.0	1049.0	3508.0	30000	024	1772.6	1007.6	3545.2	3735.2
544	1710.0	1011.6	3433.2	3623.2	636	1795.4	1030.4	3470.8	3664 0	722	1754.2	1049.2	3508.4	3000.4	025	1772.8	1007.8	3545.6	3730.0
540	1717.0	1011.8	3433.6	3623.6	640	1725.0	1820.0	3471.2	3661 6	724	1754.4	1840 0	3500.0	3800 1	827	1772.0	1869.0	3546.0	3736.0
547	1717.0	1812.0	3434.0	3624.0	641	1738.0	1831.0	3472.0	3662.0	725	1754.0	1840 0	3509.2	3600 4	828	1773.4	1869.4	3546.9	3736.9
549	1717.4	1012.2	2424.9	3624.4	642	1736.0	1931.0	3472.0	3662.0	736	1755.0	1950.0	3510.0	3700.0	920	1773.6	1969.6	3540.0	3730.0
540	1717.4	1812.4	3434.0	3625.2	643	1736.4	1931.4	3472.9	3662.9	737	1755.0	1850.0	3510.0	3700.0	830	1773.0	1869.9	3547.2	3737.6
550	1717.8	1812.0	3435.6	3625.6	644	1736.6	1831.6	3472.0	3663.2	738	1755.4	1850.4	3510.4	3700.4	831	1774.0	1869.0	3548.0	3738.0
551	1718.0	1813.0	3436.0	3626.0	645	1736.8	1831.8	3473.6	3663.6	730	1755.6	1850.6	3511.2	3701.2	832	1774.0	1869.2	3548.4	3738.4
552	1718.2	1813.2	3436.4	3626.4	646	1737.0	1832.0	3474.0	3664.0	740	1755.8	1850.8	3511.6	3701.6	833	1774.4	1869.4	3548.8	3738.8
553	1718.4	1813.4	3436.8	3626.8	647	1737.2	1832.2	3474.4	3664.4	741	1756.0	1851.0	3512.0	3702.0	834	1774.6	1869.6	3549.2	3739.2
554	1718.6	1813.6	3437.2	3627.2	648	1737.4	1832.4	3474.8	3664.8	742	1756.2	1851.2	3512.4	3702.4	835	1774.8	1869.8	3549.6	3739.6
555	1718.8	1813.8	3437.6	3627.6	649	1737.6	1832.6	3475.2	3665.2	743	1756.4	1851.4	3512.8	3702.8	836	1775.0	1870.0	3550.0	3740.0
556	1719.0	1814.0	3438.0	3628.0	650	1737.8	1832.8	3475.6	3665.6	744	1756.6	1851.6	3513.2	3703.2	837	1775.2	1870.2	3550.4	3740.4
557	1719.2	1814.2	3438.4	3628.4	651	1738.0	1833.0	3476.0	3666.0	745	1756.8	1851.8	3513.6	3703.6	838	1775.4	1870.4	3550.8	3740.8
558	1719.4	1814.4	3438.8	3628.8	652	1738.2	1833.2	3476.4	3666.4	746	1757.0	1852.0	3514.0	3704.0	839	1775.6	1870.6	3551.2	3741.2
559	1719.6	1814.6	3439.2	3629.2	653	1738.4	1833.4	3476.8	3666.8	747	1757.2	1852.2	3514.4	3704.4	840	1775.8	1870.8	3551.6	3741.6
560	1719.8	1814.8	3439.6	3629.6	654	1738.6	1833.6	3477.2	3667.2	748	1757.4	1852.4	3514.8	3704.8	841	1776.0	1871.0	3552.0	3742.0
561	1720.0	1815.0	3440.0	3630.0	655	1738.8	1833.8	3477.6	3667.6	749	1757.6	1852.6	3515.2	3705.2	842	1776.2	1871.2	3552.4	3742.4
562	1720.2	1815.2	3440.4	3630.4	656	1739.0	1834.0	3478.0	3668.0	750	1757.8	1852.8	3515.6	3705.6	843	1776.4	1871.4	3552.8	3742.8
563	1720.4	1815.4	3440.8	3630.8	657	1739.2	1834.2	3478.4	3668.4	751	1758.0	1853.0	3516.0	3706.0	844	1776.6	1871.6	3553.2	3743.2
564	1720.6	1815.6	3441.2	3631.2	658	1739.4	1834.4	3478.8	3668.8	752	1758.2	1853.2	3516.4	3706.4	845	1776.8	1871.8	3553.6	3743.6
565	1720.8	1815.8	3441.6	3631.6	659	1739.6	1834.6	3479.2	3669.2	753	1758.4	1853.4	3516.8	3706.8	846	1777.0	1872.0	3554.0	3744.0
566	1721.0	1816.0	3442.0	3632.0	660	1739.8	1834.8	3479.6	3669.6	754	1758.6	1853.6	3517.2	3707.2	847	1777.2	1872.2	3554.4	3744.4
567	1721.2	1816.2	3442.4	3632.4	661	1740.0	1835.0	3480.0	3670.0	755	1758.8	1853.8	3517.6	3707.6	848	1777.4	1872.4	3554.8	3744.8
500	1/21.4	1810.4	3442.8	3032.8	662	1740.2	1835.2	3480.4	3670.4	750	1759.0	1854.0	3518.0	3708.0	849	1777.0	1872.0	3555.2	3745.2
509	1721.0	1016.0	2443.2	3033.2	664	1740.4	1030.4	3480.8	3670.8	750	1759.2	1054.2	3518.4	3708.4	051	1770.0	1072.0	3555.0	3745.0
570	1721.0	1010.0	2444.0	3033.0	004	1740.0	1035.0	2401.2	2071.2	750	1759.4	1004.4	3510.0	3700.0	051	1770.0	1073.0	2558.4	2740.0
570	1722.0	1017.0	3444.0	3624.4	000	1740.8	1030.8	3401.0	3872.0	709	1750.0	1954.0	3510.0	3700.0	850	1770 4	1973.2	3550 0	3740.4
572	1722.2	1817	3444.4	3624.0	667	1741.0	1896.0	3492.0	3872.0	764	1760.0	1955 0	3520.0	3710.0	854	1770.4	1873.4	3557.2	3747.0
574	1700 4	1817 4	3444.8	3,000	680	1724.4	1836.4	3492.9	3672.9	761	1760.0	1855.0	3620.0	3710.4	9.04	1770.0	1872 0	3557 0	3747.0
575	1722.0	1817 9	3445.8	3635.6	BRO	1741.4	1836.4	3483.2	3673.2	762	1760.4	1855.4	3520.4	3710.4	856	1779.0	1874 0	3558.0	3748.0
576	1723.0	1818.0	3446 0	3636.0	670	1741.8	1836 8	3483 6	3673.R	764	1760.6	1855 6	3521.2	3711.2	857	1779.2	1874 2	3558.4	3748.4
577	1723.2	1818 2	3446.4	3636.4	671	1742.0	1837.0	3484 0	3674.0	765	1760.8	1855 8	3521.6	3711.6	858	1779.4	1874 4	3558.8	3748.8
578	1723.4	1818.4	3446.8	3636.8	672	1742.2	1837.2	3484.4	3674.4	766	1761.0	1856.0	3522.0	3712.0	859	1779.6	1874.6	3559.2	3749.2
579	1723.6	1818.6	3447.2	3637.2	673	1742.4	1837.4	3484.8	3674.8	767	1761.2	1856.2	3522.4	3712.4	860	1779.8	1874.8	3559.6	3749.6
580	1723.8	1818.8	3447.6	3637.6	674	1742.6	1837.6	3485.2	3675.2	768	1761.4	1856.4	3522.8	3712.8	861	1780.0	1875.0	3560.0	3750.0
581	1724.0	1819.0	3448.0	3638.0	675	1742.8	1837.8	3485.6	3675.6	769	1761.6	1856.6	3523.2	3713.2	862	1780.2	1875.2	3560.4	3750.4
582	1724.2	1819.2	3448.4	3638.4	676	1743.0	1838.0	3486.0	3676.0	770	1761.8	1856.8	3523.6	3713.6	863	1780.4	1875.4	3560.8	3750.8
583	1724.4	1819.4	3448.8	3638.8	677	1743.2	1838.2	3486.4	3676.4	771	1762.0	1857.0	3524.0	3714.0	864	1780.6	1875.6	3561.2	3751.2
584	1724.6	1819.6	3449.2	3639.2	678	1743.4	1838.4	3486.8	3676.8	772	1762.2	1857.2	3524.4	3714.4	865	1780.8	1875.8	3561.6	3751.6
585	1724.8	1819.8	3449.6	3639.6	679	1743.6	1838.6	3487.2	3677.2	773	1762.4	1857.4	3524.8	3714.8	866	1781.0	1876.0	3562.0	3752.0
586	1725.0	1820.0	3450.0	3640.0	680	1743.8	1838.8	3487.6	3677.6	774	1762.6	1857.6	3525.2	3715.2	867	1781.2	1876.2	3562.4	3752.4
587	1725.2	1820.2	3450.4	3640.4	681	1744.0	1839.0	3488.0	3678.0	775	1762.8	1857.8	3525.6	3715.6	868	1781.4	1876.4	3562.8	3752.8
588	1725.4	1820.4	3450.8	3640.8	682	1744.2	1839.2	3488.4	3678.4	776	1763.0	1858.0	3526.0	3716.0	869	1781.6	1876.6	3563.2	3753.2
589	1725.6	1820.6	3451.2	3641.2	683	1744.4	1839.4	3488.8	3678.8	777	1763.2	1858.2	3526.4	3716.4	870	1781.8	1876.8	3563.6	3753.6
590	1725.8	1820.8	3451.6	3641.6	684	1744.6	1839.6	3489.2	3679.2	778	1763.4	1858.4	3526.8	3716.8	871	1782.0	1877.0	3564.0	3754.0
591	1726.0	1821.0	3452.0	3642.0	685	1744.8	1839.8	3489.6	3679.6	779	1763.6	1858.6	3527.2	3717.2	872	1782.2	1877.2	3564.4	3754.4
592	1726.2	1821.2	3452.4	3642.4	686	1745.0	1840.0	3490.0	3680.0	780	1763.8	1858.8	3527.6	3717.6	873	1782.4	1877.4	3564.8	3754.8
593	1726.4	1821.4	3452.8	3642.8	087	1745.2	1840.2	3490.4	3680.4	781	1764.0	1859.0	3528.0	3718.0	874	1782.6	18/7.6	3505.2	3755.2
594	1726.6	1821.6	3453.2	3043.2	880	1745.4	1840.4	3490.8	3080.8	782	1/64.2	1859.2	3528.4	3/18.4	8/5	1782.8	18/7.8	3505.6	3755.6
595	1726.8	1821.8	3453.6	3643.6	689	1745.6	1840.6	3491.2	3681.2	783	1764.4	1859.4	3528.8	3718.8	876	1783.0	1878.0	3566.0	3756.0
596	1/27.0	1822.0	3454.0	3644.0	690	1/45.8	1840.8	3491.6	3081.6	784	1/64.6	1859.6	3529.2	3/19.2	877	1/83.2	1878.2	3566.4	3756.4
597	1/27.2	1822.2	3454.4	3644.4	691	1/46.0	1841.0	3492.0	3682.0	785	1/64.8	1859.8	3529.6	3/19.6	078	1/83.4	1078.4	3566.8	3755.8
586	1727.4	1022.4	3434.8	3044.8	602	1746.2	1041.2	3482.4	3082.4	707	1705.0	1000.0	3530.0	3720.0	0/9	1703.6	1078.6	3507.2	3757.0
099	1727.6	1822.6	3455.2	3045.2	093	1746.4	1841.4	3492.8	30002.8	787	1765.2	1860.2	3530.4	3720.4	088	1783.8	1070	3500.0	3750.0
600	1/2/.8	1822.8	3455.6	3645.6	694	1746.6	1641.6	3493.2	3083.2	788	1/65.4	1860.4	3530.8	3720.8	000	1784.0	18/9.0	3568.0	3758.0
601	1728.0	1623.0	3456.0	3646.0	695	1/46.8	1041.8	3493.6	3083.6	700	1765.6	1000.6	3531.2	3721.2	082	1784.2	1079.2	3568.4	3758.4
802	1728.2	1023.2	3450.4	3040.4	096	1747.0	1042.0	3484.0	3684.0	790	1700.8	1000.8	3531.6	3723.0	083	1704.4	1079.4	3500.0	3750.0
003	1728.4	1023.4	3430.8	3040.8	697	1747.2	1042.2	3484.4	3084.4	700	1700.0	1001.0	3532.0	3722.0	084	1704.0	1079.0	3509.2	3750.0
004	1720.0	1023.6	3437.2	3047.2	096	1747.4	1042.4	0405.0	0004.8	182	1/00.2	1 1001.2	0002.4	0122.4	000	1704.8	101,9'9	0.6000	3108.0

GSM1900 frequencies

CH	ТΧ	RX	VCO TX	VCO RX	СН	ТΧ	RX	VCO TX	VCO RX	СН	ТΧ	RX	VCO TX	VCO RX	CH	ТΧ	RX	vco тх	VCO RX
512	1850,2	1930,2	3700,4	3860,4	606	1869,0	1949,0	3738,0	3898,0	700	1887,8	1967,8	3775,6	3935,6	794	1906,6	1986,6	3813,2	3973,2
513	1850,4	1930,4	3700,8	3860,8	607	1869,2	1949,2	3738,4	3898,4	701	1888.0	1968,0	3776,0	3936,0	795	1906,8	1986,8	3813,6	3973,6
515	1850.8	1930,6	3701,2	3861.6	808	1869.6	1949,4	3739.2	3899.0	702	1888.4	1968.4	3776.8	3936,8	790	1907,0	1987.2	3814.0	3974.0
516	1851.0	1931.0	3702.0	3862.0	610	1869.8	1949.8	3739.6	3899.6	704	1888.6	1968.6	3777.2	3937.2	798	1907.4	1987.4	3814.8	3974.8
517	1851,2	1931.2	3702,4	3862,4	611	1870,0	1950,0	3740,0	3900,0	705	1888,8	1968,8	3777,6	3937,6	799	1907.6	1987,6	3815,2	3975,2
518	1851,4	1931,4	3702,8	3862,8	612	1870,2	1950,2	3740,4	3900,4	706	1889,0	1969,0	3778,0	3938,0	800	1907,8	1987,8	3815,6	3975,6
519	1851,6	1931,6	3703,2	3863,2	613	1870,4	1950,4	3740,8	3900,8	707	1889,2	1969,2	2 3778,4	3938,4	801	1908,0	1988,0	3816,0	3976,0
520	1851,8	1931,8	3703,6	3863,6	614	1870,6	1950,6	3741,2	3901,2	708	1889,4	1969,4	3778,8	3938,8	802	1908,2	1988,2	3816,4	3976,4
521	1852,0	1932,0	3704,0	3864,0	615	1870,8	1950,8	3741,6	3901,6	709	1889,6	1969,6	3779,2	3939,2	803	1908,4	1988,4	3816,8	3976,8
523	1852.4	1932,2	3704,4	3864.8	617	1871.2	1951,0	3742,0	3902,0	710	1890.0	1969,0	3780.0	3939,6	804	1900,0	1900,0	3817.6	3977.6
524	1852.6	1932.6	3705.2	3865.2	618	1871.4	1951.4	3742.8	3902.8	712	1890.2	1970.2	3780.4	3940.4	806	1909.0	1989.0	3818.0	3978.0
525	1852.8	1932.8	3705.6	3865.6	619	1871.6	1951.6	3743.2	3903.2	713	1890.4	1970.4	1 3780.8	3940.8	807	1909.2	1989.2	3818,4	3978.4
526	1853,0	1933,0	3706,0	3866,0	620	1871,8	1951,8	3743,6	3903,6	714	1890,6	1970,6	3781,2	3941,2	808	1909,4	1989,4	3818,8	3978,8
527	1853,2	1933,2	3706,4	3866,4	621	1872,0	1952,0	3744,0	3904,0	715	1890,8	1970,8	3781,6	3941,6	809	1909,6	1989,6	3819,2	3979,2
528	1853,4	1933,4	3706,8	3866,8	622	1872,2	1952,2	3744,4	3904,4	716	1891,0	1971,0	3782,0	3942,0	810	1909,8	1989,8	3819,6	3979,6
529	1853,6	1933,6	3707,2	3867,2	623	1872,4	1952,4	3744,8	3904,8	717	1891,2	1971,2	2 3782,4	3942,4					
530	1853,8	1933,8	3707,6	3867,6	625	1872.0	1952,6	3745,2	3905,2	710	1891,4	1971,4	3/82,8	3942,8					
532	1854.2	1934.2	3708.4	3868.4	626	1873.0	1953.0	3746.0	3906.0	720	1891.8	1971.8	3783.6	3943.6					
533	1854,4	1934,4	3708,8	3868,8	627	1873,2	1953,2	3746,4	3906,4	721	1892,0	1972,0	3784,0	3944,0					
534	1854,6	1934,6	3709,2	3869,2	628	1873,4	1953,4	3746,8	3906,8	722	1892,2	1972,2	3784,4	3944,4					
535	1854,8	1934,8	3709,6	3869,6	629	1873,6	1953,6	3747,2	3907,2	723	1892,4	1972,4	3784,8	3944,8					
536	1855,0	1935.0	3710,0	3870.0	630	1873,8	1953,8	3747,6	3907,6	724	1892.6	1972,6	3785,2	3945,2					
537	1855,2	1935,2	3710,4	3870,4	631	1874.0	1954,0	3748,0	3908,0	725	1892.8	1972,8	3785,6	3945,6					
530	1855.6	1935,4	3710,0	3871.2	633	1874.2	1954,2	3748,4	3908,4	727	1893.0	1973,0	3786.0	3946,0					
540	1855.8	1935.8	3711.6	3871.6	634	1874.6	1954.6	3749.2	3909.2	728	1893.4	1973.4	3786.8	3946.8					
541	1856.0	1936.0	3712.0	3872.0	635	1874.8	1954,8	3749,6	3909,6	729	1893.6	1973.6	3787.2	3947.2					
542	1856,2	1936,2	3712,4	3872,4	636	1875,0	1955,0	3750,0	3910,0	730	1893,8	1973,8	3787,6	3947,6					
543	1856,4	1936,4	3712,8	3872,8	637	1875,2	1955,2	3750,4	3910,4	731	1894,0	1974,0	3788,0	3948,0					
544	1856,6	1936,6	3713,2	3873,2	638	1875,4	1955,4	3750,8	3910,8	732	1894,2	1974,2	2 3788,4	3948,4					
545	1856,8	1936,8	3713,6	3873,6	639	1875,6	1955,6	3751,2	3911,2	733	1894.4	1974,4	3788,8	3948,8					
545	1857.0	1937,0	3714,0	3874,0	640	1876.0	1955,8	3752.0	3911,6	734	1894,6	1974,6	3789,2	3949,2					
548	1857.4	1937.4	3714,4	3874.8	642	1876.2	1956.2	3752.4	3912,0	736	1895.0	1974,0	3790.0	3950.0					
549	1857.6	1937.6	3715.2	3875.2	643	1876.4	1956,4	3752.8	3912,8	737	1895.2	1975.2	3790,4	3950,4					
550	1857,8	1937,8	3715,6	3875,6	644	1876,6	1956,6	3753,2	3913,2	738	1895,4	1975,4	3790,8	3950,8					
551	1858,0	1938,0	3716,0	3876,0	645	1876,8	1956,8	3753,6	3913,6	739	1895,6	1975,6	3791,2	3951,2					
552	1858,2	1938,2	3716,4	3876,4	646	1877,0	1957,0	3754,0	3914,0	740	1895,8	1975,8	3 3791,6	3951,6					
553	1858,4	1938,4	3716,8	3876,8	647	1877,2	1957,2	3754,4	3914,4	741	1896,0	1976,0	3792,0	3952,0					
555	1858.8	1930,0	3717.6	3877.6	649	1877.6	1957.4	3755.2	3914,0	742	1896.4	1976,2	3792,4	3952,4					
556	1859.0	1939.0	3718.0	3878.0	650	1877.8	1957.8	3755.6	3915.6	743	1896.6	1976.4	3793.2	3953.2					
557	1859.2	1939.2	3718,4	3878.4	651	1878.0	1958.0	3756.0	3916.0	745	1896.8	1976.8	3793.6	3953.6					
558	1859,4	1939,4	3718,8	3878,8	652	1878,2	1958,2	3756,4	3916,4	746	1897,0	1977,0	3794,0	3954,0					
559	1859,6	1939,6	3719,2	3879,2	653	1878,4	1958,4	3756,8	3916,8	747	1897,2	1977,2	2 3794,4	3954,4					
560	1859,8	1939,8	3719,6	3879,6	654	1878,6	1958,6	3757,2	3917,2	748	1897,4	1977,4	1 3794,8	3954,8					
561	1860,0	1940,0	3720,0	3880,0	655	1878,8	1958,8	3757,6	3917,6	749	1897,6	1977,6	3795,2	3955,2					
563	1860.4	1940,2	3720,4	3880.8	657	1879.0	1959,0	3758.4	3918.0	750	1898.0	1977,0	3796.0	3955,6					
564	1860.6	1940.6	3721.2	3881.2	658	1879.4	1959,4	3758.8	3918.8	752	1898.2	1978.2	2 3796.4	3956.4					
565	1860,8	1940,8	3721,6	3881,6	659	1879,6	1959,6	3759,2	3919,2	753	1898,4	1978,4	3796,8	3956,8					
566	1861,0	1941.0	3722,0	3882,0	660	1879,8	1959,8	3759,6	3919,6	754	1898.6	1978,6	3797,2	3957,2					
567	1861,2	1941,2	3722,4	3882,4	661	1880,0	1960,0	3760,0	3920,0	755	1898,8	1978,8	3 3797,6	3957,6					
568	1861,4	1941,4	3722,8	3882,8	662	1880,2	1960,2	3760,4	3920,4	756	1899,0	1979,0	3798,0	3958,0					
570	1861.8	1941.8	3723.6	3883.6	664	1880.6	1960.6	3761.2	3921.2	758	1899.4	1979.4	3798.8	3958.8					
571	1862.0	1942.0	3724.0	3884.0	665	1880.8	1960.8	3761.6	3921.6	759	1899.6	1979.6	3799.2	3959.2					
572	1862,2	1942,2	3724,4	3884,4	666	1881,0	1961,0	3762,0	3922,0	760	1899,8	1979,8	3799,6	3959,6					
573	1862,4	1942,4	3724,8	3884,8	667	1881,2	1961,2	3762,4	3922,4	761	1900,0	1980,0	3800,0	3960,0					
574	1862,6	1942,6	3725,2	3885,2	668	1881,4	1961,4	3762,8	3922,8	762	1900,2	1980,2	2 3800,4	3960,4					
575	1862,8	1942,8	3725,6	3885,6	669	1881,6	1961,6	3763,2	3923,2	763	1900,4	1980,4	1 3800,8	3960,8					
5/0	1863.2	1943,0	3726,0	3886.4	670	1882.0	1961,0	3764.0	3923,6	765	1900,6	1960,6	3801.6	3961,2					
578	1863.4	1943.4	3726.8	3886.8	672	1882.2	1962.2	3764.4	3924,0	766	1901.0	1981.0	3802.0	3962.0					
579	1863,6	1943,6	3727,2	3887.2	673	1882.4	1962,4	3764,8	3924,8	767	1901.2	1981,2	2 3802,4	3962.4					
580	1863,8	1943,8	3727,6	3887,6	674	1882,6	1962,6	3765,2	3925,2	768	1901,4	1981,4	3802,8	3962,8					
581	1864,0	1944,0	3728,0	3888,0	675	1882,8	1962,8	3765,6	3925,6	769	1901,6	1981,6	3803,2	3963,2					
582	1864,2	1944,2	3728,4	3888,4	676	1883,0	1963,0	3766,0	3926,0	770	1901,8	1981,8	3 3803,6	3963,6					
583	1864,4	1944,4	3720.0	3880.0	670	1883,2	1963,2	3766.8	3926,4	772	1902,0	1982,0	3804,0	3964,0					
585	1864.8	1944,0	3729.6	3889.6	679	1883.6	1963.6	3767.2	3927.2	773	1902,2	1982.4	1 3804.8	3964.8					
586	1865.0	1945.0	3730.0	3890.0	680	1883.8	1963,8	3767,6	3927,6	774	1902.6	1982.6	3805.2	3965.2					
587	1865,2	1945,2	3730,4	3890,4	681	1884,0	1964,0	3768,0	3928,0	775	1902,8	1982,8	3805,6	3965,6					
588	1865,4	1945,4	3730,8	3890,8	682	1884,2	1964,2	3768,4	3928,4	776	1903,0	1983,0	3806,0	3966,0					
589	1865,6	1945,6	3731,2	3891,2	683	1884,4	1964,4	3768,8	3928,8	777	1903.2	1983,2	3806,4	3966,4					
590	1865,8	1945,8	3/31,6	3891,6	684	1884,6	1964,6	3769,2	3929,2	778	1903,4	1983,4	3806,8	3966,8					
591	1866.2	1946.0	3732,0	3892,0	680	1885.0	1965.0	3770.0	3930.0	780	1903,6	1983.0	3807.2	3967.6					
593	1866.4	1946.4	3732.8	3892.8	687	1885.2	1965.2	3770.4	3930.4	781	1904.0	1984.0	3808.0	3968.0					
594	1866,6	1946,6	3733,2	3893,2	688	1885,4	1965,4	3770,8	3930,8	782	1904,2	1984,2	2 3808,4	3968,4					
595	1866,8	1946,8	3733,6	3893,6	689	1885,6	1965,6	3771,2	3931,2	783	1904,4	1984,4	3808,8	3968,8					
596	1867,0	1947,0	3734,0	3894,0	690	1885,8	1965,8	3771,6	3931,6	784	1904,6	1984,6	3809,2	3969,2					
597	1867,2	1947,2	3734,4	3894,4	691	1886,0	1966,0	3772,0	3932,0	785	1904,8	1984,8	3809,6	3969,6					
598	1867.6	1947,4	3735.2	3894,8	692	1886.4	1966.4	3772.9	3932,4	785	1905,0	1985,0	3810,0	3970,0					
600	1867.8	1947.8	3735.6	3895.6	694	1886.6	1966.6	3773.2	3933.2	788	1905.4	1985 4	3810.8	3970.8					
601	1868,0	1948,0	3736,0	3896,0	695	1886,8	1966,8	3773,6	3933,6	789	1905,6	1985,6	3811.2	3971,2					
602	1868,2	1948,2	3736,4	3896,4	696	1887,0	1967,0	3774,0	3934,0	790	1905,8	1985,8	3811,6	3971,6					
603	1868,4	1948,4	3736,8	3896,8	697	1887,2	1967,2	3774,4	3934,4	791	1906,0	1986,0	3812,0	3972,0					
604	1868,6	1948,6	3737,2	3897,2	698	1887,4	1967,4	3774,8	3934,8	792	1906,2	1986,2	3812,4	3972,4					
000	1000,6	1340,8	1 3131,6	3091,6	099	1001,6	1301,6	3113,2	38333,2	193	1500,4	1300,4	J012,8	3312,8					

Nokia Customer Care

9 — Schematics

(This page left intentionally blank.)
Table of Contents

System connector	9–4
RETU	9–5
ТАНУО	9–6
RAPGSM	9–7
Bluetooth	9–8
UI part 1	9–9
UI part 2	9–10
RF part	
Audio, IHF, Vibra	9–12
SIM interface	
IrDA interface	
MMC interface	
CMT memories	
Camera	

System connector

RETU

TAHVO

PLACE = TAHVO

RAPGSM

Bluetooth

BT WLAN RF

UI part 1

UI part 2

RF part

Audio, IHF, Vibra

AUDIO(8:0)

SIM interface

IrDA interface

MMC interface

PLACE = MMC

1-bit Data for SD

CMT memories

Camera

UI_CTRL_CMT(4:0)

RM-88 <u>Schematics</u>

Nokia Customer Care

Glossary

(This page left intentionally blank.)

A/D-converter	Analog-to-digital converter
ACI	Accessory Control Interface
ADC	Analog-to-digital converter
ADSP	Application DPS (expected to run high level tasks)
AGC	Automatic gain control (maintains volume)
ALS	Ambient light sensor
AMSL	After Market Service Leader
ARM	Advanced RISC Machines
ARPU	Average revenue per user (per month or per year)
ASIC	Application Specific Integrated Circuit
ASIP	Application Specific Interface Protector
B2B	Board to board, connector between PWB and UI board
BB	Baseband
BCO2	Bluetooth module made by CSR
BIQUAD	Bi-quadratic ,type of filter function)
BSI	Battery Size Indicator
BT	Bluetooth
CBus	MCU controlled serial bus connected to UPP_WD2,UEME and Zocus
ССР	Compact Camera Port
CDSP	Cellular DSP (expected to run at low levels)
CLDC	Connected limited device configuration
CMOS	Complimentary metal-oxide semiconductor circuit (low power consumption)
COF	Chip on Foil
COG	Chip on Glass
CPU	Central Processing Unit
CSR	cambridge silicon radio
CSTN	Color Super Twisted Nematic
CTSI	Clock Timing Sleep and interrupt block of Tiku
CW	Continuous wave
D/A-converter	Digital-to-analouge converter
DAC	Digital-to-analouge converter
DBI	Digital Battery Interface
DBus	DSP controlled serial bus connected between UPP_WD2 and Helgo
DCT-4	Digital Core Technology
DMA	Direct memory access
DP	Data Package

DPLL	Digital Phase Locked Loop
DSP	Digital Signal Processor
DtoS	Differential to Single ended
EDGE	Enhanced data rates for global/GSM evaluation
EGSM	Extended GSM
EM	Energy management
ЕМС	Electromagnetic compability
EMI	Electromagnetic interference
ESD	Electrostatic discharge
FCI	Functional cover interface
FPS	Flash Programming Tool
FR	Full rate
FSTN	Film compensated super twisted nematic
GND	Ground, conductive mass
GPIB	General-purpose interface bus
GPRS	General Packet Radio Service
GSM	Group Special Mobile/Global System for Mobile communication
HF	Hands free
HFCM	Handsfree Common
HS	Handset
HSCSD	High speed circuit switched data (data transmission connection faster than GSM)
HW	Hardware
I/0	Input/Output
IBAT	Battery current
IC	Integrated circuit
ICHAR	Charger current
IF	Interface
IHF	Integrated hands free
IMEI	International Mobile Equipment Identity
IR	Infrared
IrDA	Infrared Data Associasion
ISA	Intelligent software architecture
JPEG/JPG	Joint Photographic Experts Group
LCD	Liquid Crystal Display
LDO	Low Drop Out
LED	Light-emitting diode

LPRF	Low Power Radio Frequency
MCU	Micro Controller Unit (microprocessor)
MCU	Multiport control unit
MIC, mic	Microphone
MIDP	Mobile Information Device Profile
MIN	Mobile identification number
MIPS	Million instructions per second
ММС	Multimedia card
MMS	Multimedia messaging service
NTC	Negative temperature coefficient, temperature sensitive resistor used as a temperature sensor
OMA	Object management architechture
OMAP	Operations, maintenance, and administartion part
Opamp	Operational Amplifier
РА	Power amplifier
PDA	Pocket Data Application
PDA	Personal digital assistant
PDRAM	Program/Data RAM (on chip in Tiku)
Phoenix	Software tool of DCT4.x
PIM	Personal Information Management
PLL	Phase locked loop
РМ	(Phone) Permanent memory
PUP	General Purpose IO (PIO), USARTS and Pulse Width Modulators
PURX	Power-up reset
PWB	Printed Wiring Board
PWM	Pulse width modulation
RC-filter	Resistance-Capacitance filter
RF	Radio Frequency
RF PopPort TM	Reduced function PopPortTM interface
RFBUS	Serial control Bus For RF
RSK	Right Soft Key
RS-MMC	Reduced size Multi Media Card
RSSI	Receiving signal strength indicator
RST	Reset Switch
RTC	Real Time Clock (provides date and time)
RX	Radio Receiver

SARAM	Single Access RAM
SAW filter	Surface Acoustic Wave filter
SDRAM	Synchronous Dynamic Random Access Memory
SID	Security ID
SIM	Subscriber Identity Module
SMPS	Switched Mode Power Supply
SNR	Signal-to-noice ratio
SPR	Standard Product requirements
SRAM	Static random access memory
STI	Serial Trace Interface
SW	Software
SWIM	Subscriber/Wallet Identification Module
тсхо	Temperature controlled Oscillator
Tiku	Finnish for Chip, Successor of the UPP, Official Tiku3G
ТХ	Radio Transmitter
UART	Universal asynchronous receiver/transmitter
UEME	Universal Energy Management chip (Enhanced version)
UEMEK	See UEME
UI	User Interface
UPP	Universal Phone Processor
UPP_WD2	Communicator version of DCT4 system ASIC
USB	Universal Serial Bus
VBAT	Battery voltage
VCHAR	Charger voltage
VCO	Voltage controlled oscillator
VCTCXO	Voltage Controlled Temperature Compensated Crystal Oscillator
VCXO	Voltage Controlled Crystal Oscillator
Vр-р	Peak-to-peak voltage
VSIM	SIM voltage
WAP	Wireless application protocol
WD	Watchdog
XHTML	Extensible hypertext markup language
Zocus	Current sensor, (used to monitor the current flow to and from the battery)