
BREW® 3.1.2 OEM Porting Guide for
MSM Platforms

QUALCOMM Incorporated
5775 Morehouse Drive

San Diego, CA. 92121-1714
U.S.A.

This documentation was written for use with the BREW Porting Kit for Windows, software version 3.1.2.
This documentation and the BREW Porting Kit software described in it are copyrighted, with all rights
reserved. This documentation and the BREW Porting Kit software may not be copied, except as
otherwise provided in your software license or as expressly permitted in writing by QUALCOMM
Incorporated.

Copyright © 2004 QUALCOMM Incorporated

All Rights Reserved

Printed in the United States of America

All data and information contained in or disclosed by this document are confidential and proprietary
information of QUALCOMM Incorporated, and all rights therein are expressly reserved. By accepting
this material, the recipient agrees that this material and the information contained therein are held in
confidence and in trust and will not be used, copied, reproduced in whole or in part, nor its contents
revealed in any manner to others without the express written permission of QUALCOMM Incorporated.

Export of this technology may be controlled by the United States Government. Diversion contrary to
U.S. law prohibited.

MSM, the BREW logo, Eudora, and PureVoice are trademarks of QUALCOMM Incorporated.

QUALCOMM, Binary Runtime Environment for Wireless, BREW, BREW SDK, BREWStone,
MobileShop, and TRUE BREW are registered trademarks of QUALCOMM Incorporated.

All trademarks and registered trademarks referenced herein are the property of their respective owners.

BREW® 3.1.2 OEM Porting Guide for MSM Platforms

November 18, 2004

QUALCOMM Proprietary
iii

Contents

Introducing the BREW OEM Porting Guide for MSM Platforms 8

What’s in this guide 8
Acronyms and terms 10

 OEM Porting Kit Overview 13

What’s in the Porting Kit? 13
BREW from an integration perspective 15

Quick-Start Guide to Porting 16

Before you begin 16
Step 1. Initialize BREW 16
Step 2. Set up event handling 17
Step 3. Implement display support 18
Step 4. Configure the device 19
Step 5. Perform the first device build 20
Step 6. Enable BREW features 20
Step 7. Enable the BREW Application Manager and OTA downloads 20
Step 8. Integrate the native UI within BREW-enabled devices 21
Step 9. Protect memory with BRIDLE 22
Step 10. Implement the Resource Manager 22
Step 11. Perform testing 22

Initializing BREW 23

Getting ready to initialize 23
Identifying the BREW task 23
Defining a task signal 23
Modifying the task loop 24
Initializing BRIDLE SWI Handler 24

BREW initialization 25
Troubleshooting 25

Terminating BREW 26
Suspending and resuming BREW 26

Contents

QUALCOMM Proprietary
iv

Sending Events to BREW 27

Sending key events 27
Examples 28
Configurable timers for key repeat events 29
Application behavior 30

Multiple keypress support 31
Handling keyguard, flip, screen rotation, and headset 32
Sending pen events 33
Sending joystick events 34

Implementing Display Support 36

Core display information 36
Display 39
Bitmaps 39
Application frames 40

Fonts 41
BREW Bitmapped Fonts 42
Encoding type support 42

PNG support 43
Scenarios 43

Annunciators 44
Using the Brew Simulator 45
Verifying implementation 46

Understanding the Generic Serial Interface 47

Device-initiated service 47
Application-initiated service 48
Application design considerations 48

Disconnection of a device while talking to an application 48
Exiting an application during device communication 48
General application behavior with unexpected data 48

Using the BSCOP 49
Command and response framing 51
Examples of BSCOP command sequences 51

IPort interface 52
Device-initiated usage 53
Application-initiated usage 54
Closing a port 54
Serial port configuration 54
Application registration for supported devices 55

Using DMSS changes to enable BREW SIO 55

Contents

QUALCOMM Proprietary
v

File changes 56

Configuring Devices 63

Physical and hardware characteristics 63
BREW heap 63

Download services parameters 64
Configuring R-UIM-based devices 64

R-UIM interface 67
Overview of a R-UIM-based device 67
Overview of BREW on a R-UIM-based device 68
Porting BREW on R-UIM devices 68

Verifying implementation 70
Maximum path length and mapping 71
Appearance 71
Packet Data Dormancy 71
BREW file access restrictions 72

Architecture 72
Porting instructions 73
Special instructions for 5100 series MSM 74

Managing and Downloading Applications and Extensions 77

BREW file types and dynamic application installations 77
Installing BREW files 80
Creating static extension DLLs 83

Sample code for the exported function 83
Asynchronous BREW Interfaces 84

System-level service extensions 84
Application contexts 85
Callbacks 85
Application interface 87
System service 87
Sample implementation 87

Application downloads 90
BREW signature verification 90

Enabling the BREW Application Manager for OTA download 90
Downloading BREW applications 91
Downloading to R-UIM devices 93

Memory Security Through BRIDLE 94

BRIDLE-I architecture 94

Contents

QUALCOMM Proprietary
vi

Supervisor to User 95
User to Supervisor mode 95
Memory regions 96
MMU/MPU configuration 97
Scatter load 97

Implementing BRIDLE integration 101
Verifying implementation of BRIDLE integration 102

BREW UI Guidelines 103

Creating a static application or extension 103
Obtaining a ClassID 103
Creating the extension or application 104

Including multiple applications or extensions 107
Creating persistent files 107
Registering a handler 108
Using and extending INotifier 109

Notification scenario 109
Call flow 110
Implementing an INotifier class 110

Extending IControl and creating an image viewer 111
Implementing the custom controls 112

Extending text control 112
Implementing the text control interface 112
Reference implementation 113
Verifying implementation 115
Working with third party language 115

Integrating native UI applications within BREW devices 117
Characteristics of shim applets 126

Privacy check removal 128
Enabling the privacy prompt 128
OEM_Check Privacy 129

Setting Up Call Handling 130

Reference implementation 130
Customizing reference implementation 130
Verifying implementation 131
Call management 131

Handling incoming calls 131
BREW-based UI or dialer 132
Handling outgoing calls from a BREW application 133
Managing call and position privacy 133

Contents

QUALCOMM Proprietary
vii

Setting up SMS 134

Verifying implementation 134

Setting up battery 135

Verifying implementation 135

Managing Resources 136

Managing Resources 136
Resource control architecture 136
Implementing a resource 138
Customizing the resource arbiter 140

Interoperability with GSM1x 143

Introduction 143
GSM1x requirements and recommendations 143
Prerequisites 144

Understanding GSM1x device architecture 144
Understanding GSM1x BREW interfaces 145

Implementing the GSM1x interfaces 149
Customizing reference implementation 152
Verifying Implementation 152

NTP Example BREW Extension 153

Introduction 153
Integrating INTP as a Static Extension 153

OEM Acceptance Process 154

Static Modules 155

Associating MIF files with static modules 155
Dynamic and constant MIF files 156
Important notes 158

Appendix A: Using the OEM Extranet 159

Using the BREW OEM web sites 159
Obtaining an account 159

Contents

QUALCOMM Proprietary
viii

Understanding the customer ID 160
Obtaining porting support 160
Requesting new BREW features 160
Obtaining release notes 160
Understanding known issues 160
Obtaining BREW OEM Notes 160

Appendix B: DMI Compliance 161

DMI compliance command 162

Appendix C: Test Enable Bit Removal 166

QUALCOMM Proprietary
8

Introducing the BREW OEM
Porting Guide for MSM

Platforms

This document provides information about and instructions for porting QUALCOMM’s Binary

Runtime Environment for Wireless® (BREW™) platform to mobile devices that use the Mobile

Station Modem (MSM™) family of ASICs from QUALCOMM CDMA Technologies (QCT).

What’s in this guide

The remainder of the BREW™ OEM Porting Guide contains the following sections.

OEM Porting Kit
Overview

Provides a general overview of the porting process, and describes the
components of the Porting Kit and their relationships to one another.

Quick-Start Guide to
Porting

Contains a high-level tutorial that results in installing a simple
application on a device, and gives references to subsequent sections
containing information specific to certain Porting Kit components and
porting tasks.

Initializing BREW Provides information about plugging BREW into a task that enables it
to communicate with the native device code, and tells you how to
invoke the initialization routine in the device code to initialize BREW.

Sending Events to
BREW

Discusses event handling.

Implementing Display
Support

Provides specifics about displaying BREW applications on devices,
including using the BREW Simulator.

Understanding the
Generic Serial
Interface

Explains the BREW Serial I/O (SIO).

Configuring Devices Explains the various aspects of device configuration for BREW.

QUALCOMM Proprietary
9

Introducing the BREW OEM Porting Guide for MSM Platforms

For information about specific interfaces, please see the BREW OEM API Reference Online

Help.

Managing and
Downloading
Applications and
Extensions

Discusses application download capabilities including dynamic and
static application extensions.

BREW UI Guidelines Explains the various aspects of the BREW UI and discusses best
practices for integrating BREW with your native UI.

Memory Security
Through BRIDLE

Describes the BREW Isolated Domain for Legitimate Execution
(BRIDLE) mechanism used to protect BREW and Dual Mode
Subscriber Software (DMSS) code and data from BREW applications.

Setting Up Call
Handling

Explains how to use the ITAPI interface for call handling.

Setting up SMS Explains how to set up and verify the implementation of SMS
interfaces.

Setting up battery Explains how to set up and verify the implementation of the IBattery
interface.

Managing Resources Describes how BREW manages resources using the resource
controller and resource arbiter.

Interoperability with
GSM1x

Explains interoperability between CDMA and GSM networks.

OEM Acceptance
Process

Discusses the integration and acceptance test process.

Static Modules Describes version control of static applications and modules through
the use of Module Information Files (MIF).

Appendix A: Using the
OEM Extranet

Provides details for obtaining and using a BREW OEM Extranet
account.

Appendix B: DMI
Compliance

Provides information regarding the Diagnostic Monitor Interface
(DMI).

Appendix C: Test
Enable Bit Removal

Includes some conceptual information about the removal of the test
enabled bit and a table showing functionality removed and the current
method to support this functionality.

Appendix C: Test
Enable Bit Removal

Includes some conceptual information about the removal of the test
enabled bit and a table showing functionality removed and the current
method to support this functionality.

QUALCOMM Proprietary
10

Introducing the BREW OEM Porting Guide for MSM Platforms

Acronyms and terms

The following acronyms and terms are used throughout the Porting Kit documentation set.

ADS Application Download Server The ADS hosts the carrier’s catalog of BREW
applications and is the host device to which subscribers
connect for catalog browsing and application
downloads.

AMSS Advanced Mode Subscriber Software

APCS ARM Procedure Call Standard

ATCOP AT Command Processor

BAR BREW Applet Resource file The binary output file from the Resource Editor.

BBF BREW Bitmapped Font BREW-specific font format.

BCI BREW Compressed Image A BCI file consists of a series of graphic images
compressed and combined, using the BREW
Compressed Image Authoring Tool, to add animation to
a BREW application.

BRIDLE BREW Isolated Domain for
Legitimate Execution

A mechanism to protect BREW and DMSS code and
data from BREW applications. The mechanism uses
the services of the Memory Management Unit (MMU)
available on MSM™ chipsets with ARM 9 core. In the
absence of the MMU, as in the case of ARM7TDMI
based MSM ASICS, this mechanism can be used to
prevent BREW applications from disabling interrupts,
modifying call stacks, and the like.

CAVE Cellular Authentication and Voice
Encryption

An algorithm used by mobiles devices for authentication
with the base station.

CHV Card holder verification

DDB Device dependent bitmap Bitmap in the device’s native format.

DIB Device independent bitmap An object that supports the IBitmap or IDIB interfaces.

DMSS Dual Mode Subscriber Software

DMI Diagnostic Monitor Interface A QCT (DMSS) interface used by all BREW tools,
including the BREW AppLoader, BREW Logger, The
Grinder®, and Shaker.

DSP Digital signal processor A specialized computer chip designed to perform
speedy and complex operations on digitized
waveforms.

QUALCOMM Proprietary
11

Introducing the BREW OEM Porting Guide for MSM Platforms

DTR Data terminal ready A control signal sent from the Data Terminal Equivalent
(DTE) to the Data Communications Equivalent (DCE)
that indicates that the DTE is powered on and ready to
communicate. DTR can also be used for hardware flow
control.

EF Elementary file

EULA End User License Agreement An agreement requested during installation sequences
that binds the user to copyright responsibilities.

ICE In-circuit emulator

ISOD Interface Specification and
Operational Description

A QCT guide that explains how to use interfaces for
services provided by the modem baseband processor.

JTAG Joint test action group

MD5 Message-Digest 5 An RSA hash algorithm developed by Ronald L. Rivest
of MIT to verify data integrity.

ME Mobile equipment

MIF Module Information File The MIF Editor generates this binary file, which
contains information regarding the list of classes and
applets supported by the modules.

MMU Memory Management Unit The platforms that contains MMU with ARM9 chipsets,
for example: MSM6100

MOD Dynamically loaded module This file type is the dynamically loaded module
executed at runtime. The applet source files are
compiled and linked into this MOD file type.

MO-
SMS

Mobile originated SMS A method of sending short alphanumeric messages
from a mobile device. In BREW, the OEM is responsible
for implementing MO-SMS on the OEM code layer to
allow BREW and BREW applications to send SMS.

MPU Memory Protection Unit The platforms that contain the MMU with ARM7 based
chipsets, for example, MSM6050™.

OAT Operational Acceptance Test A PEK tool that provides a set of tests that allow
verification of BREW porting on a device.

OTA Over-the-air

PEK Porting Evaluation Kit A QIS product that tests the operational accuracy of
BREW porting and BREW performance on a device.

PNG Portable Network Graphics Format A graphics file format that uses advanced image
compression technology to provide better color depth
for 16-, 24-, and 32-bit images.

PRL Preferred roaming list

REX Qualcomm’s real-time executive
operating system

RLP Radio link protocol

QUALCOMM Proprietary
12

Introducing the BREW OEM Porting Guide for MSM Platforms

R-UIM Removable user identity module A collection of functions that verifies the R-UIM
connection and returns the R-UIM status on a R-UIM-
based device.

SID Subscriber ID Identifies the device involved in a BREW application
transaction.

SIG Signature file A file attached to dynamic applications for verification
purposes.

SIO Serial input/output The electronic methodology used in serial data
transmission.

SPC Service programming code A device-specific code required to install BREW on a
device.

SWI Software interrupt

UART Universal asynchronous
receiver/transmitter

A device, usually an integrated circuit chip, that
performs the parallel-to-serial conversion of digital data
to be transmitted and the serial-to-parallel conversion of
digital data that has been transmitted.

UASMS UI API for SMS A function for registering SMS listener functions in
BREW.

UIMID User Identity Module ID

QUALCOMM Proprietary
13

 OEM Porting Kit Overview

BREW provides a layer on top of the chip system software. This makes the device's

functionality available to the application without requiring the developer to have the chip

system source code or even a direct relationship with the device manufacturer.

This section describes the components of the Porting Kit and their relationships to one

another.

What’s in the Porting Kit?

The diagram below shows the components that comprise the OEM Porting Kit. A table of

component descriptions follows the diagram.

OEM Porting Kit components

QUALCOMM Proprietary
14

OEM Porting Kit Overview

Porting Kit Components

Component Description
BREW library files (BREW*.lib) The library files are available for linking with the device software using

the ARM Developer Suite.

For information about using the libraries and ARM, see the BREW
OEM API Reference Online Help.

OEM reference implementation
files

The OEM reference implementation files are compiled and linked with
the BREW libraries and the device build. OEM interfaces must be
integrated to support applications using BREW. The reference
implementations for the non-device driver specific OEM interfaces (for
example, LCD) are provided to you as part of the Porting Kit. For
information about specific OEM interface files, refer to the BREW™
OEM API Reference Online Help for MSM Platforms or the OEM
source file headers.

AEE header files (AEE*.h) Referenced for the device build, the AEE header files expose the
BREW API to BREW applications as well as to the native applications
that use the functions exposed by the API. These files are described
in detail in the BREW OEM API Reference Online Help.

AEE source files The AEE source files correspond to some of the BREW library files,
and are already built into the BREW libraries. The main purpose of
providing these files in source is to assist you with debugging, if it is
necessary. It is recommended that you do not modify these files, as
this will likely cause instability or incompatibility with future software
versions and failure of applications that leverage these interfaces. To
use any of these file for debugging purposes, compile the files into
their corresponding object files (.o files). Place the .o files ahead of the
BREW libraries when the link command is issued to build the device
image. This forces the linker to use the symbols in the .o files, not
those in the BREW libraries.

QUALCOMM Proprietary
15

OEM Porting Kit Overview

BREW from an integration perspective

The following diagram shows the BREW device phases. The remainder of this document

addresses Phase 2, the Porting Development Effort

BREW device phases.

The following is a description of the phases:

Phase 1

The operator communicates its device requirements to the
OEM. Phase 1 concludes when the operator and OEM reach an
agreement on the features of the BREW device. This agreed-
upon features list becomes a formal requirements document.

Phase 2

The OEM is involved in porting BREW onto the device. At the
end of phase 2, the OEM has completed the port and has run
the PEK to verify that the port meets the requirements specified
in Phase 1.

Phase 3

The operator is responsible for testing the device. If necessary,
QIS performs a readiness review of the device to determine if
application testing can be commenced on that device. At the
end of phase 3, the commercial viability of the device is
determined.

Phase 4

Developers are provided with any device software updates.
Also, the operator determines if the device has reached end of
life, in which case no more applications are accepted for that
device.

QUALCOMM Proprietary
16

Quick-Start Guide to Porting

This section contains procedures that will give you hands-on practice to familiarize you with

the main aspects of the porting process. Where appropriate, procedural steps are

accompanied by references to sections containing more detailed information.

Before you begin

The following hardware tools and software are required for porting:

• ARM Development Suite 1.0, 1.1, 1.2 or equivalent compiler/linker with the latest

patches

• JTAG or ICE debugging device and software

• Data cable to connect to the serial port of the device

• Product Support Tools (PST) or equivalent tools to access:

– File system

– Non-volatile items or other non-volatile configuration items

– Image download

– Debug messages

If you intend to develop custom extensions or applications utilizing the device simulator

included in the Porting Kit, it is recommended that you also have Microsoft Visual C++ 6.0 or

higher.

Step 1. Initialize BREW

1. Identify the DMSS task in whose context BREW will run. This may be an existing

task, such as the User Interface task, or a new task created specifically for BREW.

The stack of the task in which BREW is integrated is used by BREW and all of the

applications. It is recommended to keep this size as high as possible. Typical

values are 8 - 16 KB.

QUALCOMM Proprietary
17

Quick-Start Guide to Porting

NOTE: BREW is not re-entrant. Accordingly, all calls to BREW APIs must be made

in the context of the task in which BREW was initialized.

2. Define a new and unique signal AEE_APP_SIG for BREW in the task identified in

1, above.

3. Modify the task loop for the BREW task identified, to execute AEE_Dispatch() if

AEE_APP_SIG is set.

4. Initialize the BRIDLE SWI Handler table by calling bridle_InitSWITable(). This

function must be called before initializing BREW, regardless of whether BRIDLE is

turned on.

5. Add code to initialize BREW by calling AEE_Init(AEE_APP_SIG). This must be

done before any BREW service or interface is invoked. It is typically done in the

task initialization code for the BREW task.

6. Add code to terminate BREW by calling AEE_Exit(). AEE_Exit() must be called

before the device is powered down, to allow BREW to properly perform its

shutdown procedures.

See Initializing BREW on page 23.

Step 2. Set up event handling

1. Translate each key input into an AEE Virtual Key code, and send an event by

means of each of the following functions:

• AEE_Key(wVCode)

• AEE_KeyPress (wVCode)

• AEE_KeyRelease(wVCode)

NOTE: These functions must be called in the context of the task in which BREW

was initialized.

You must send key events (EVT_KEY_PRESS, EVT_KEY, EVT_KEY) to BREW

for each key pressed and released. For the complete list of the AEE Virtual Key

codes, see the definition of AVKType in the BREW SDK API Reference Online

Help.

QUALCOMM Proprietary
18

Quick-Start Guide to Porting

2. Send the following events to BREW:

• AEE_SEND_FLIP_EVT (p)

• AEE_SEND_KEYGUARD_EVT (p)

• AEE_SEND_LOCKED_EVT (p)

• AEE_SEND_HEADSET_EVT (p)

• AEE_SEND_SCRROTATE_EVT (p)

NOTE: All key and system events must be sent to BREW, regardless of whether

BREW is suspended or there is an active BREW application. These events reset

the BREW screen saver inactivity timer.

See Sending Events to BREW on page 27.

Step 3. Implement display support

1. Choose an OEMBitmap implementation that best matches your screen color bit

depth:

• 1 bit per pixel, 2 colors (usually black and white), OEMBitmap1.c

• 2 bits per pixel, 4 colors (usually grey scale), OEMBitmap2.c

• 8 bits per pixel, 256 colors, OEMBitmap8.c

• 12 bits per pixel, 4096 colors, OEMBitmap12.c

• 15/16 bits per pixel, 65536 colors, OEMBitmap16.c

• 18 bits per pixel, 262144 colors, OEMBitmap18.c

The color bit-depth does not refer to the physical LCD capability; you should pick

one that matches the color depth of your screen buffer.

2. Using OEMDisplayDev.c as a template, implement the IDisplayDev interface for

the device.

3. Implement the AEECLSID_DEVBITMAPn and AEECLSID_DEVBITMAPn_CHILD

ClassIDs for this display to link to one of the bitmap implementations chosen in step

1.

NOTE: Be sure that the pixel buffer provided to the bitmap constructor is large

enough to hold the bitmap data for any of the bitmap formats selected in step 1. For

instance, if the OEMBitmap16 and OEMBitmap18 implementations have been

selected, the buffer must be big enough to hold the pixel data for the OEMBitmap18

implementation.

QUALCOMM Proprietary
19

Quick-Start Guide to Porting

4. Using OEMAppFrame.c as an example, implement the IAppFrame interface for this

display. Link it into the OEM mod table as demonstrated in the reference

implementation using the appropriate ClassID (AEECLSID_APPFRAMEn, where n

is the display number, 1-4).

5. Implement the AEE_DEVICEITEM_SYS_COLORS_DISPn and

AEE_DEVICEITEM_DISPINFOn device items in OEM_GetDeviceInfoEx()

(OEMConfig.c), where n is the display number.

6. This step is for the primary display, only:
Modify OEM_GetDeviceInfo() to put the appropriated values for the primary display

in the cxScreen, cyScreen, and nColorDepth fields of the AEEDeviceInfo struct.

(cxAltScreen and cyAltScreen are deprecated and should be set to 0.)

7. Enable individual annunciators, depending on carrier requirements, by

implementing OEM_Disp_Annunciators. See the BREW OEM API Reference

Online Help.

Refer to Implementing Display Support on page 36.

Step 4. Configure the device

1. Provide device information to BREW (OEM_GetDeviceInfo(),

OEM_GetDeviceInfoEx()).

2. Provide configuration information to BREW (OEM_GetConfig()).

3. Provide mapping for the directory names between BREW and native device code.

The mapping is defined by OEMFSGNPMap structure for the following name

spaces:

• AEEFS_ROOT_DIR

• AEEFS_HOME_DIR

• AEEFS_SYS_DIR

• AEEFS_MOD_DIR

• AEEFS_MIF_DIR

• AEEFS_SHARED_DIR

• AEEFS_ADDRESS_DIR

• AEEFS_RINGERS_DIR

• AEEFS_CARD0_DIR

QUALCOMM Proprietary
20

Quick-Start Guide to Porting

Refer to Configuring Devices on page 63.

Step 5. Perform the first device build

1. Verify the existing version of BREW that is on the DMSS/AMSS software by

checking the BREWVersion.h file located in apps/BREW/inc.

2. If you already have a build with BREW version 3.0 on it, you can just build the

standard build with no modifications.

3. If you have a build with BREW version 2.1, you must make some modifications to

the build system and to the DMSS/AMSS software. Detailed instructions are

located in BREW OEM Note: Migrating From BREW 2.1 to 3.0. The basic steps

required are:

a. Make sure all BREW libraries are included in the build. (For information about

BREW libraries, see the BREW OEM API Reference Online Help.)

b. Compile all of the needed OEM files.

c. Make sure all static apps have MIF files, and that these are included in

OEMConstFiles.c

d. Reconcile changes from BREW 2.1 to BREW 3.0 with the DMSS/AMSS

software.

Step 6. Enable BREW features

The list of required BREW features varies from operator to operator. Refer to the Enabling and

Testing Instructions for BREW Interfaces MSM for a description of all BREW features, along

with specific instructions for enabling each required feature. The enabling and testing

instructions also includes details such as whether a reference implementation is provided for

a feature, how to replace the reference implementation with your own implementation, and

which BREW libraries support the feature (if any).

Step 7. Enable the BREW Application Manager and
OTA downloads

1. Enable BREWAppManager.

QUALCOMM Proprietary
21

Quick-Start Guide to Porting

a. Link the appropriate BrewAppMgr library into the device build.

b. Copy the appropriate color depth brewappmgr.mif in .../brew/mifs folder.

c. Copy the appropriate color depth brewappmgr.bar in

.../brew/mods/brewappmgr folder.

Refer to Enabling the BREW Application Manager for OTA download on page 90.

Step 8. Integrate the native UI within BREW-enabled
devices

1. Integrate shim application-related code with your project. You can copy the code

from the <BREW\pk\examples\shimapphelper> directory included with the Porting

Kit.

2. Identify all native applications to be shimmed, #define the quantity, and create a list

of their unique class Ids.

3. Add an application for each native application to the OEMTransientApp. These

applications will all behave the same by default.

4. Add the transient and idle applications to the mod table, so that BREW can access

them.

5. Locate your common event handler function, define a function pointer to describe

it, map each event handler function to the class ID associated with the application,

and create a map lookup table.

6. Add the Idle application as the system's auto-start application.

7. Edit your application state mechanism to launch and close shimmed applications,

rather than pushing or popping a new major state onto the state machine's stack.

This ensures that the BREW state remains running, and your native application

runs under the BREW shim created earlier.

8. Look up and invoke the event handler for the application, as needed. This is

determined by whether a shim application is running. The event handler must be

invoked when the application is started, or when a device event occurs.

9. Enable/disable Privacy Check in ITAPI_MakeVoiceCall() and

IPOSDET_GetGPSInfo(). Refer to Privacy check removal on page 128.

Refer to BREW UI Guidelines on page 103.

QUALCOMM Proprietary
22

Quick-Start Guide to Porting

Step 9. Protect memory with BRIDLE

1. Port BREW (with BRIDLE turned off). Ensure that bridle_InitSWITable is called

before AEE_Init.

2. Create code and data regions as described in the scatter load section. Modify the

boot loader to use the new load and exec regions (bootmem.c).

3. Replace the SWI Handler in DMSS with the SWI Handler provided in the Porting

Kit (swihandler.s)

4. Configure the MMU/MPU

5. Incorporate any changes to DMSS as recommended in the BREW release notes.

6. Enable MMU/MPU and set bridle_on to TRUE.

Refer to Memory Security Through BRIDLE on page 94.

Step 10. Implement the Resource Manager

1. Enable IResourceControl. This enables IResourceControl classes for application

priority (AEECLSID_TOPVISIBLECTL) and sound

(AEECLSID_RESCTL_SOUND).

2. Build IResArbiter class implemented in OEMResArbiter.c. You can customize the

resource arbiter logic based on your requirements.

Step 11. Perform testing

3. Working with the operator, complete the BREW Device Requirements

questionnaire.

4. Complete a Device Data Form/Device Pack using the BRWE Device Configurator.

5. Run and pass the tests in the BREW Porting Evaluation Kit (PEK).

6. Test the end-user experience.

See OEM Acceptance Process on page 154, and the BREW Porting Evaluation Kit (PEK)

User’s Guide.

QUALCOMM Proprietary
23

Initializing BREW

This section discusses pre-initialization procedures and describes the BREW initialization

process.

Getting ready to initialize

Before BREW can be initialized, you must identify a task in which to run BREW, define a

unique task signal, modify the task loop, and initialize the BRIDLE SWI Handler.

Identifying the BREW task

You must identify a task in which to run BREW, and then define a unique task signal so that

BREW can communicate with the native device code. You can identify either a new task or an

existing task; however, QUALCOMM strongly recommends that you use the UI task for the

BREW task. In the event you need to create a separate task for BREW or run on another

preexisting task, the priority of the task must be immediately under the UI task priority, but

higher than the file system and sleep task priorities.

TIP: Numerous calls are made in the BREW task to display-related routines (for example,

DrawText() and Drawing Images). If the drawing routines do not already run in the BREW task,

be sure that those routines can handle being called from multiple threads.

NOTE: For DMSS releases that already include BREW, BREW runs in the UI task. Reference

task.h to locate the priority of the UI task.

Defining a task signal

After a task has been identified, you must define a unique task signal so BREW can

communicate with the native device code. BREW sets the AEE_APP_SIG signal to inform the

native device code that BREW needs to execute.

QUALCOMM Proprietary
24

Initializing BREW

For example, for devices using MSM chips and running BREW in the UI task context, add a

signal AEE_APP_SIG in ui.h for BREW. This signal must be unique to the BREW task and

must not conflict with any other general-purpose REX signal.

The following code shows a common way of adding a handler for the AEE_APP_SIG signal in

the task function, which is responsible for running BREW:

static rex_sigs_type sigs; // hold signals
...
for(; ;)
{
 sigs = rex_wait(
 ...
 | AEE_APP_SIG); // wait for AEE_APP_SIG
 ...
 if(sigs & AEE_APP_SIG) { // handle AEE_APP_SIG
 (void) rex_clr_sigs(&ui_tcb, AEE_APP_SIG);
 AEE_Dispatch();
 }
 ...
}

NOTE: Do not put any conditional statements around the AEE_Dispatch() call. Whenever the

task running BREW receives the BREW signal, AEE_Dispatch() must be called.

NOTE: For DMSS releases that already include BREW, find the definition of AEE_APP_SIG

in ui.h. The ui_task() function in ui.c call rex_wait() for AEE_APP_SIG. When rex_wait returns,

the signals are passed to ui_signal() in uihsig.c, which calls AEE_Dispatch() in the event that

the AEE_APP_SIG signal is set.

Modifying the task loop

BREW uses AEE_APP_SIG to inform the BREW task that it needs to run. Therefore, the task

loop must be modified to handle the BREW signal and invoke AEE_Dispatch whenever

AEE_APP_SIG is set.

Initializing BRIDLE SWI Handler

The function bridle_InitSWITable must be called before BREW is initialized, and regardless of

whether BRIDLE is enabled. This step is necessary to populate the function pointer tables

needed for uniform access between BRIDLE and non-BRIDLE builds. For information about

BRIDLE, see Memory Security Through BRIDLE on page 94.

QUALCOMM Proprietary
25

Initializing BREW

BREW initialization

To initialize BREW, call AEE_Init() with a unique signal value for the BREW task. This function

returns the pointer to IShell for you to save. It is used for calls to the IShell interface. You can

call AEE_GetShell() to obtain the same pointer. You must invoke AEE_Init() in the context of

the BREW task.

Within the AEE_Init() function call, BREW performs a number of tasks:

• Initializes IShell, IOEMDisplay, and ITAPI, among other interfaces.

• Calls OEM_GetConfig() with the CFGI_AUTOSTART selector to determine whether

an applet needs to launch automatically after BREW completes initializing. The

returned value is the ClassID of the applet that needs to auto-launch, or 0 (zero) if

no applet is selected to run after the initialization. Typically, this value must be set to

0 (zero). However, there are cases where you can select to auto-launch an applet at

startup. For example, if the device’s UI is written as a BREW applet, this applet is

launched at the initialization.

• BREW sets a user-level timer by way of clock services if any alarms have been

registered through ISHELL_SetAlarm(). This allows BREW to dispatch alarms and

SMS messages to applications that have registered to receive these events. These

functions are supported until the BREW AEE_Exit() function has been made. For this

reason, the recommended procedure is for BREW to initialize when the device

starts, and terminate when the device is about to power off. Although you can

integrate the BREW environment so that it starts and ends on an as-needed basis,

doing so prevents the proper operation of the SMS and clock services. Applications

may not receive BREW alarms, which impacts applications such as calendar

applications. More importantly, the BREW SMS functions do not function correctly.

This prevents BREW applications from receiving SMS messages when BREW is not

running. This also prevents the carrier from asynchronously recalling undesired

applications from the devices.

NOTE: For DMSS releases that already include BREW, AEE_Init() is called from ui_init in ui.c.

Troubleshooting

If this function returns NULL, take the necessary steps to recover because BREW has failed

to initialize. The following can cause BREW not to initialize:

QUALCOMM Proprietary
26

Initializing BREW

• OEM display initialization (OEMDisp_New) fails, returns an error code, and fills the

OEM display interface pointer with NULL.

• ITAPI fails to initialize.

• The file system is corrupt or not working correctly.

Terminating BREW

To terminate BREW, call AEE_Exit() before powering down the device. This is necessary

because it allows BREW to free up resources and record a proper shutdown of BREW

services. Failure to call AEE_Exit will cause the device to enter safe mode after every two

shutdowns, thereby severely impacting the user experience.

NOTE: For DMSS releases that already include BREW, AEE_Exit() is called from

ui_handle_stop_sig() in uihsig.c.

Suspending and resuming BREW

NOTE: In previous BREW versions, there was a recommendation to suspend and resume

BREW by calling AEE_Suspend() and AEE_Resume(), respectively, whenever the native UI

took control of the main display. This caused problems for the coexistence of BREW

applications and non-BREW applications, however, which led to the alternative method

described below.

It is recommended not to use of the functions AEE_Suspend() and AEE_Resume(). Instead,

whenever you want to take control of the main display or keypad, a transient BREW application

must be started. After this transient BREW application is started, drawing to the screen must

be done in the context of the BREW application. This ensures that there is a BREW application

running at all times and makes it seamless for the user to switch from BREW applications to

native applications. This logic can be applied in all cases, such as handling incoming calls,

handling incoming SMS messages, and the like. Refer to Integrating native UI applications

within BREW devices on page 117 for details.

QUALCOMM Proprietary
27

Sending Events to BREW

This section contains information about sending key events and other events to BREW.

Sending key events

It is extremely important to send key events to BREW at all times. When any event is sent to

BREW, the return value indicates whether the event was processed by BREW.

In scenarios in which it is not possible to send key events to BREW, you must call the function

AEE_Active whenever a key is pressed. This allows BREW to deal with the screen saver

correctly.

For each key pressed and released, you must translate key input into an AEE Virtual Key

(AVK) code and send an event via each of the following functions.

NOTE: The three functions listed above take one input parameter, which is the translated AEE

Virtual Key code of the AVKType enumeration type defined in AEEVCodes.h.

BREW sends key repeat events to BREW applications while a key is held. In addition, BREW

sets appropriate timer(s) upon the receipt of EVT_KEY_PRESS, and sends EVT_KEY events

until EVT_KEY_RELEASE is received from the application.

AEE_KeyPress()
(EVT_KEY_PRESS)

Send as soon as the key is pressed.

AEE_KeyRelease()
(EVT_KEY_RELEASE)

Send as soon as the key is released.

AEE_Key()
(EVT_KEY)

Send immediately after EVT_KEY_PRESS or immediately
before EVT_KEY_RELEASE, depending on your preference.
Some device models have key input responses when a key is
pressed and others when released. This event is configured
according to each OEM.

QUALCOMM Proprietary
28

Sending Events to BREW

BREW starts an internal timer as soon as it receives EVT_KEY. This timer is used for sending

repeated EVT_KEY events to the BREW application while the key is held. This timer is

repeated until BREW receives the EVT_KEY_RELEASE from the OEM. For the same reason,

it is extremely important the EVT_KEY_RELEASE is sent to BREW as soon as the key is

released. For example, sending EVT_KEY to BREW but not sending EVT_KEY_RELEASE to

BREW causes repeated EVT_KEY events to be sent to the BREW application.

Previous BREW versions supported an event EVT_KEY_HELD to indicate that a key was

held. This event is now deprecated and no longer supported. Instead, repeated EVT_KEY

events are sent to the BREW application to indicate that a key was held.

NOTE: For DMSS releases that already include BREW, key events are handed to BREW in

uisbrew.c. When the device is in the BREW state, uistate_brew() processes all UI events,

including key events. uistate_brew() calls ui_to_brew_event() to translate the device’s key

code into the BREW AVK type. This function then calls the AEE_KeyPress(), AEE_Key(), and

AEE_KeyRelease macros.

Examples

Following is an example scenario, an event flow from a BREW application perspective, and

steps for handling key events from an OEM perspective.

Scenario

1. Press key AVK_1.

2. Hold key AVK_1 for 1 minute.

3. Release key AVK_1.

Event flow from a BREW application perspective

1. EVT_KEY_PRESS (wParam = AVK_1)

2. EVT_KEY (wParam=AVK_1, dwParam=0)

3. EVT_KEY (wParam=AVK_1, dwParam=KB_AUTOREPEAT)

The KB_AUTOREPEAT indicates to the application that this is a repeat of the same
key.

4. EVT_KEY (wParam=AVK_1, dwParam=KB_AUTOREPEAT)

5. EVT_KEY_RELEASE (wParam=AVK_1)

QUALCOMM Proprietary
29

Sending Events to BREW

Steps for handling key events from an OEM perspective

1. Call AEE_KeyPress (AVK_1) when AVK_1 is pressed.

2. Call AEE_Key (AVK_1) for EVT_KEY event.

3. Call AEE_KeyRelease (AVK_1) when AVK_1 is released.

NOTE: The buttons that are used to increase and decrease volume, which are

usually located on the side of a device handset, must be mapped to

AVK_VOLUME_UP and AVK_VOLUME_DOWN, respectively.

Configurable timers for key repeat events

The following files are used to configure timers for key repeat events.

You may control this behavior by modifying the values of OEMKBAutoRepeat as follows:

case CFGI_KB_AUTOREPEAT:
{

OEMKBAutoRepeat * par = (OEMKBAutoRepeat *)pBuff;

File Description

AEEVCodes.h Defines two new constants.

KB_AUTOREPEAT_START Indicates the time delay before keypad EVT_KEY events
begin auto-repeating.

KB_AUTOREPEAT_RATE Indicates the time delay between EVT_KEY auto-repeat
events.

OEMConfig.h Defines the new structure and CFGI_KB_AUTOREPEAT
configuration item.

OEMKBAutoRepeat

• OEMKBAutoRepeat.dwStart

• OEMKBAutoRepeat.dwRate

• Indicates the time in milliseconds between the time the
first EVT_KEY event fires and the key repeats. If the
value is 0, no auto-repeat behavior is supported.The
default value, if a nonzero is returned, is
KB_AUTOREPEAT_START.

• Indicates the time in milliseconds between each
repeated EVT_KEY. If the value is 0, a single EVT_KEY
(repeat) fires. The default value, if a nonzero is
returned, is KB_AUTOREPEAT_RATE.

QUALCOMM Proprietary
30

Sending Events to BREW

if(!pBuff || nSize != sizeof(OEMKBAutoRepeat))
return(EBADPARM);

if(par)

{

par->dwStart = NNNN;
par->dwRate = NNNN;
return(0);

}
}

Application behavior

Keypad auto-repeat keys are transmitted to the application as follows.

EVT_KEY_PRESS

EVT_KEY (wParam = Key, dwParam = 0)

• BREW sets a timer to KB_AUTOREPEAT_START or the OEM-defined value, if
it is nonzero.

• BREW does not auto-repeat if you indicate that auto-repeat is off
(OEMKBAutoRepeat.dwStart = 0).

• When the timer expires, the following logic repeats while the key is held.

EVT_KEY (wParam = key, dwParam = KB_AUTOREPEAT)

The timer sets to KB_AUTOREPEAT_RATE or the OEM-defined value if it is

nonzero.

Events do not repeat if the OEM sets OEMKBAutoRepeat.dwRate to 0.

EVT_KEY_RELEASE

The following diagram shows a simple case in which a single key is pressed at one time.

QUALCOMM Proprietary
31

Sending Events to BREW

Single keypress

Multiple keypress support

Multiple keypress support is used for advanced gaming and entertainment applications. When

two or more keys are simultaneously pressed, no extra steps need to be taken. However, it is

crucial that all the key events are reported to BREW in the correct order.

An important requirement is that the keypad has to detect multiple simultaneous keypresses

and releases. Another requirement is to provide support for the device driver and hardware,

and the OEM layer that relays the events to BREW correctly.

When two or more keys are pressed simultaneously, the same sequence of events holds true.

The following diagram shows a case where three keys are pressed at one time.

Time =
KB_AUTO_REPEAT_START

User BREW ApplicationOEM

Key press ‘1’

Key release ‘1’

EVT_KEY_PRESS, ‘1’

EVT_KEY, ‘1’

EVT_KEY_RELEASE, ‘1’

EVT_KEY_PRESS

EVT_KEY

EVT_KEY

EVT_KEY

EVT_KEY_RELEASE

Time =
KB_AUTO_REPEAT_RATE

QUALCOMM Proprietary
32

Sending Events to BREW

Multiple keypress (three keys)

Send all the events as key activities, as shown. These activities are detected by the device

driver. It is the BREW applets that actually determine which keys are simultaneously pressed,

based on the past EVT_KEY_PRESS and EVT_KEY_RELEASE events.

Handling keyguard, flip, screen rotation, and headset

To handle keyguard, flip, screen rotation, and headset, you must send the following events to

BREW:

• AEE_SEND_FLIP_EVT (p)

• AEE_SEND_KEYGUARD_EVT (p)

• AEE_SEND_HEADSET_EVT (p)

• AEE_SEND_SCRROTATE_EVT (p)

 User OEM BREW

Key press ‘1’
EVT_KEY_PRESS, ‘1’

EVT_KEY, ‘1’

Key press ‘2’
EVT_KEY_PRESS, ‘2’

EVT_KEY, ‘2’

Key press ‘3’
EVT_KEY_PRESS, ‘3’

EVT_KEY, ‘3’

Key release ‘2’
EVT_KEY_RELEASE, ‘2’

Key release ‘1’
EVT_KEY_RELEASE, ‘1’

Key release ‘3’
EVT_KEY_RELEASE, ‘3’

Only ‘1’ is pressed

‘1’ and ‘2’ are pressed

‘1’, ‘2’ and ‘3’ are pressed

‘1’ and ‘3’ are pressed

Only ‘3’ is pressed

QUALCOMM Proprietary
33

Sending Events to BREW

See the BREW OEM API Reference online help for documentation on these functions.

Sending pen events

The addition of four events to AEE_Event allows you to send pen events through the OEM

layer to BREW and BREW applications. Because these events specify positions or pen

movement on the display, this capability offers support for devices such as PDAs that use a

pen instead of a mouse. Three parameters are associated with these events: evt, wparam, and

dwparam. The events and their parameters appear in the tables below.

IAEE_Event pen events sent by OEMs

AEE_Event pen event sent by BREW

The four functions listed above each take three input parameters, evt, wparam, and dwparam.

NOTE: If there are between 30 and 39 pen events in the queue, half of the new pen events

will be dropped. If there are between 40 and 44 pen events in the queue, two-thirds of
the new pen events will dropped. If there are between 45 and 48 pen events in the
queue, three-quarters of the new pen events will be dropped. If there are 49 pen
events in the queue, four-fifths of the new pen events will be dropped. If there are 50
pen events in the queue, all of the new pen events will be dropped.

AEE_Event()

(EVT_PEN_DOWN)

Sent when the pen is put down on the display.

AEE_Event()

(EVT_PEN_MOVE)

Sent when the pen is moved on the display.

AEE_Event()

(EVT_PEN_UP)

Sent when the pen is lifted up from the display.

AEE_Event()

(EVT_PEN_STALE MOVE)

This pen event must not be sent by OEMs. BREW will send this event
to the apps when it sees an EVT_PEN_MOVE event, and if there is a
move near EVT_PEN_MOVE event in the queue.

QUALCOMM Proprietary
34

Sending Events to BREW

Pen event parameters

Sending joystick events

The addition of two events to AEE_Event, EVT_JOYSTICK_POS (sent by OEMs) and

EVT_JOYSTICK_STALE_POS (sent by BREW), allows you to send joystick events through

the OEM layer to BREW and BREW applications. Three parameters are associated with these

events: evt, wparam, and dwparam. The events and their parameters appear in the tables

below.

AEE_Event joystick events sent by OEMs

AEE_Event joystick event sent by BREW

Parameter Value Description
AEEEvent evt EVT_PEN_DOWN

EVT_PEN_MOVE

EVT_PEN_UP

Pen events

wparam (16 bit) Ignored

NOTE: The wparam from the
OEM layer is ignored and
later filled in with the lower
16 bits of time.

Lower 16 bits of current
time of day in
milliseconds (ms)

dwparam (32 bit) The pen position of the x
coordinate on the display

The pen position of the y
coordinate on the display

Upper 16 bits =
the signed x-coordinate

Lower 16 bits =
the signed y-coordinate

AEE_Event()

(EVT_JOYSTICK_POS)

Sent when the joystick moves.

AEE_Event()

(EVT_JOYSTICK_STALE_POS
)

This joystick event must not be sent by OEMs. BREW will send this
event to the apps when it sees an EVT_JOYSTICK_POS event, and
if there is a move near EVT_JOYSTICK_POS event in the queue.

QUALCOMM Proprietary
35

Sending Events to BREW

NOTE: If there are between 30 and 39 joystick events in the queue, half of the new joystick

events will be dropped. If there are between 40 and 44 joystick events in the queue, two-
thirds of the new joystick events will dropped. If there are between 45 and 48 joystick
events in the queue, three-quarters of the new joystick events will be dropped. If there
are 49 joystick events in the queue, four-fifths of the new joystick events will be
dropped. If there are 50 joystick events in the queue, all of the new joystick events will
be dropped.

Joystick event parameters

Parameter Value Description
AEEEvent evt EVT_JOYSTICK_POS Sent when joystick moves

wparam (16 bit) Ignored

NOTE: The wparam from the
OEM layer is ignored and
later filled in with the lower
16 bits of time.

Lower 16 bits of current
time of day in
milliseconds (ms)

dwparam (32 bit) The joystick position of the x
coordinate on the display

The joystick position of the y
coordinate on the display

Upper 16 bits =
the signed x-coordinate

Lower 16 bits =
the signed y-coordinate

QUALCOMM Proprietary
36

Implementing Display
Support

Display management is the largest portion of porting BREW. You must implement this module

first before moving on to other modules. For complete descriptions of all the functions needed

for implementation, see the BREW™ OEM API Reference Online Help for MSM Platforms.

Core display information

The extended display layer provides access to multiple displays. A secondary display typically

appears on the outside of a clamshell device. This section includes all new features of the

display layer, especially the stock font support.

BREW accesses displays through the following three bitmap interfaces:

• IBitmap

• IBitmapDev

• IBitmapCtl

The IBitmap interface is exported by all bitmaps, and the IBitmapDev and IBitmapCtl interfaces

are exported by device bitmaps.

Generally, you allocate static memory to hold the pixel data for each display. In BREW

terminology, this is the device bitmap buffer; BREW expects that there is exactly one device

bitmap buffer per display. A bitmap object exports an IBitmap interface and accesses a pixel

buffer; if it accesses a device bitmap buffer, it is called a device bitmap. A display may have

multiple device bitmaps, but all of the device bitmaps have a pointer to the same device bitmap

buffer, as shown in the following diagram.

QUALCOMM Proprietary
37

Implementing Display Support

Device bitmaps pointing to the same device bitmap buffer

You should maintain one global device bitmap per display, obtained by BREW with

AEECLSID_DEVBITMAPn.

NOTE: Calling AEE_CreateInstanceSys() multiple times with AEECLSID_DEVBITMAP1

always returns the same IBitmap, AddRef’d.

AEECLSID_DEVBITMAPn_CHILD creates a child of the corresponding global device bitmap.

You should always create a new device bitmap for each AEECLSID_DEVBITMAPn_CHILD

request.

In BREW terminology, a display update refers to the process of copying all or part of a device

bitmap buffer to the corresponding display, allowing you to see the image in the device bitmap

buffer. A synchronous update is triggered by IBITMAPDEV_Update(), called by either BREW

or a BREW application. In the case of a child device bitmap, IBITMAPDEV_Update() is

implemented as a call to the global (parent) device bitmap’s IBITMAPDEV_Update(). The

reference implementation implements the global device bitmap’s IBITMAPDEV_Update() by

calling IDISPLAYDEV_Update(), where the work occurs.

The reference OEMBitmap implementation maintains a dirty rectangle for each device bitmap.

This rectangle covers all of the pixels changed in the device bitmap since the last display

update, allowing updates to be optimized by not copying the unchanged parts of the bitmap.

Child device bitmaps pass their dirty rectangles to the global device bitmap by calling

IBITMAP_Invalidate before calling IBITMAPDEV_Update(). This allows the global device

bitmap’s dirty rectangle to be expanded to include the child’s dirty rectangle. The global device

bitmap then passes this dirty rectangle as a parameter to IDISPLAYDEV_Update.

QUALCOMM Proprietary
38

Implementing Display Support

Reference OEMBitmap implementation

In addition to the above-noted interfaces, you should put system fonts in the OEM mod table

with the ClassIDs AEECLSID_FONTSYSNORMAL, AEECLSID_FONTSYSLARGE, and

AEECLSID_FONTSYSBOLD. You should also implement

AEE_DEVICEITEM_SYS_COLORS_DISPn and AEE_DEVICEITEM_DISPINFOn in

OEM_GetDeviceInfoEx for each display.

Display access is granted differently for the primary display and any secondary displays. For

the primary display, access is granted to the currently active BREW application. The OEM

layer takes over the primary display by calling AEE_Suspend() and returns control of the

display to BREW with AEE_Resume(). However, a recommended means to take control over

the display is by starting another BREW application, called a shim application, and performing

the drawing in the context of that application. See Integrating native UI applications within

BREW devices on page 117 for details.

QUALCOMM Proprietary
39

Implementing Display Support

Secondary display access is granted first to the currently active application; if that application

does not use the display, BREW moves down the active application stack and gives the display

to the first application attempting to use it. If there is no application in the application stack

trying to use the display, BREW moves through the background application list, starting with

the most recent background application and ending with the application that has been running

in the background the longest.

An application trying to use a display is defined as an application that has a reference to a

device bitmap for that display. The OEM layer may take control of a secondary display by

calling AEE_EnableDisplay() and return control of the display to BREW by calling

AEE_EnableDisplay() again. For both the primary and secondary displays, BREW calls

IBITMAPCTL_Enable() to enable or disable the application’s instance of the device bitmap for

a particular display. This triggers any callbacks registered with IBITMAPDEV_NotifyEnable().

Display

IOEMDisp provides backlight and annunciator control. IOEMDisp contains methods for

controlling other display functions that were used prior to BREW 3.0 but are now deprecated.

Refer to OEMDisp.h for the interface specification and OEMDisp.c for a sample

implementation.

IDisplayDev updates displays. Updating a display means copying the contents of a device

bitmap to the corresponding display's frame buffer. You need one implementation of this

interface for each display on the device that is accessible to BREW. Refer to

OEMDisplayDev.h for the interface specification and OEMDisplayDev.c for a sample

implementation.

Bitmaps

You provide a bitmap implementation for each display type supported by the device. A bitmap

object exports several interfaces. Every device compatible bitmap object must export the

IBitmap and ITransform interfaces. These interfaces provide basic drawing functionality. Every

device bitmap object must additionally export the IBitmapDev and IBitmapCtl interfaces.

These interfaces provide functionality specific to device bitmaps. Sample bitmap

implementations can be found in the following files:

• OEMBitmap_priv.h

• OEMBitmap_generic.h

• OEMTransform_generic.h

QUALCOMM Proprietary
40

Implementing Display Support

• OEMBitmap1.c

• OEMBitmap2.c

• OEMBitmap8.c

• OEMBitmap12.c

• OEMBitmap16.c

• OEMBitmap18.c

The .h files contain a generic implementation written in terms of macros defined in the .c files.

Choose the .c file most similar to the required display format and modify that file only.

The IBitmap interface provides basic drawing functionality and is accessible by applications.

It is defined in AEEBitmap.h.

The ITransform interface provides transformation blitting functionality and is accessible by

applications. It is defined in AEETransform.h.

The IBitmapDev interface provides display-specific functionality and is accessible by

applications. It is defined in AEEBitmap.h.

The IBitmapCtl interface provides display-specific functionality that is needed only by BREW

and is not accessible to applications. It is defined in OEMDisp.h.

Application frames

Applications specify certain display settings, either in their MIF files or during runtime, by

passing these settings to IDisplay. These settings are in the form of a string passed by BREW

to the IAppFrame interface. The settings currently defined by BREW are width, height, color

depth, and whether the annunciator bar is displayed. There may be up to one application

frame per display per application. Treat the display settings string as a request that does not

always need to be granted. The one behavior is, that displays with color depths of greater than

16 bits, should default to a 16-bit DIB-compatible mode. The IAppFrame implementation

grants a request for maximum display depth, which allows applications to use the native color

depth of the display. In this case, IAppFrame switches the mode of the device bitmap for the

display. A function is provided for this in OEMBitmap called OEMBitmap_CopyMode(). Your

IDisplayDev implementation must support updating from device bitmaps in each desired

mode.

QUALCOMM Proprietary
41

Implementing Display Support

The IAppFrame interface is defined in OEMAppFrame.h. A sample implementation is provided

in OEMAppFrame.c.

Fonts

IFont provides the text-related functions. The following functions measure the dimension of the

text or the font:

• IFONT_GetInfo(): This function returns the vertical measurement of the font. This

measurement is divided into two sections: ascent and descent. The ascent is the

number of pixels that can extend above the baseline, whereas the descent is the

number of pixels that can extend below the baseline. For example, the example font

shown below, A j, has the ascent and descent values of 7 and 3, respectively.

IFONT_GetInfo() interface example

• IFONT_MeasureText(): This function measures the width of a string of text in pixels.

For the IFONT_GetInfo() interface example (A j), the result of this function is 10.

Usually, IFONT_DrawText() is preceded by one or both of the above functions.

IFONT_DrawText() takes in the input string in the wide character, 2-byte per character format.

This is required for some foreign language encoding types (see Encoding type support on

page 42).

Ascent

Descent

Width

QUALCOMM Proprietary
42

Implementing Display Support

BREW Bitmapped Fonts

An IFont implementation of BBF is provided in aeefont.lib. To use this implementation you

must generate a BBF file with the BBFGEN tool as described in BREW PK Utilities Guide. After

obtaining the BBF data, you must load it into your build and the AEEBitFont_NewFromBBF()

API.

There are also several sample BBF fonts in aeefont.lib that can be enabled on your device by

defining the feature FEATURE_BREW_FONTS.

Encoding type support

Although BREW’s internal string encoding type is Unicode (2 bytes per character), BREW

supports an array of encoding types including the following through utility functions:

• EUC-CN (GB2312, simplified Chinese)

• EUC-KR (CP949 and KSC5601, Korean)

• Shift-JIS (JIS, Japanese)

To accommodate BREW’s internal encoding type, each string going into BREW needs to be

2 bytes per character. For this reason, the function STREXPAND() is provided to expand

strings of the above encoding types into hybrid strings that consist of all wide characters (that

is, 2-byte characters). The encoding values don’t change; only the total number of bytes

occupied by each character is adjusted to a constant 2 bytes. To accomplish this, BREW

inserts 0x00 in front of all single byte characters and leaves double-byte characters alone, as

shown in the following string:

NOTE: This example assumes the target is based on Little Endian. The vertical lines (“|”) are

used as arbitrary character separators.

World
Shift-JIS: 0x57 | 0x6f | 0x72 | 0x6c | 0x64 | 0x82 0xcc | 0x83 0x72 | 0x83 0x64
BREW Hybrid: 0x5700 | 0x6f00 | 0x 7200 | 0x6c00 | 0x6400 | 0xcc82 | 0x7283 | 0x6483

Depending on the encoding type returned by wEncoding of the OEM_GetDeviceInfo() function

call, STREXPAND() is adjusted as the following table shows.

QUALCOMM Proprietary
43

Implementing Display Support

If you are creating your own string, you need to explicitly call out STREXPAND() to expand the

string. If you are getting a string of characters from a BREW Applet Resource (BAR) file, this

step is already taken and you get a hybrid text string.

After the strings reach the display functions OEMDisp_DrawText() and

OEMDisp_MeasureText(), contract them to the original form. This task is performed by the

WSTRCOMPRESS() function. Then, depending on the device’s encoding type, this function

follows the rules for one of the following: KSC5601 (AEE_ENC_KSC5601), CP949

(AEE_ENC_EUC_KR), S-JIS (AEE_ENC_S_JIS), or GB2312 (AEE_ENL_FUC.CH). After this

function is performed, the returned string is in the original KSC5601 or CP949 encoding type

for Korean, Shift-JIS encoding type for Japanese, or GB2312 encoding type for Chinese.

PNG support

In previous releases, the PNG library (libpng) and the BREW PNG support were integrated

into a single library (AEEPNG.lib). If you have your own libpng, support is now provided by

splitting AEEPNG.lib into the following libraries (see Scenarios on page 43 for guidelines to

follow):

• AEEPNG.lib: Contains only the BREW-specific sources.

• PNG.lib: Contains the standard LIB PNG sources. This corresponds to the libpng

library version 1.2.5.

Scenarios

If you are not using libpng in a non-BREW environment to support PNG in BREW you need to

link with two libraries that come with the Porting Kit (AEEPNG.lib and PNG.lib).

The following procedure applies if you already use libpng in a non-BREW environment.

Language BREW encoding type Character set

Simplified Chinese AEE_ENC_EUC_CN GB2312

Korean AEE_ENC_KSC5601

AEE_ENC_EUC_KR

KSC5601

CP949

Japanese AEE_ENC_S_JIS JIS

QUALCOMM Proprietary
44

Implementing Display Support

To support PNG in a non-BREW environment

1. Be sure, when your PNG.lib is built, that the following compiler-defines are defined

inside the file pngconf.h:

#define PNG_USER_MEM_SUPPORTED
#define PNG_FLOATING_POINT_SUPPORTED

#define PNG_SETJMP_NOT_SUPPORTED

#define PNG_NO_ZALLOC_ZERO
#define PNG_NO_READ_cHRM

#define PNG_NO_READ_hIST

#define PNG_NO_READ_sPLT
#define PNG_NO_READ_tIME

#define PNG_NO_READ_UNKNOWN_CHUNKS

#define PNG_NO_READ_USER_CHUNKS
#define PNG_NO_READ_iCCP

#define PNG_NO_READ_iTXt

#define PNG_NO_READ_sCAL
#define PNG_NO_MNG_FEATURES

#define PNG_NO_FIXED_POINT_SUPPORTED

2. Rebuild the png.lib.

3. Link the device image with png.lib produced after completing steps 1 and 2, above,

with the AEEPNG.lib that comes with the Porting Kit.

NOTE: You can ignore the PNG.lib that comes with the Porting Kit.

Annunciators

The annunciator bar on the phone can be defined as a separate area of the display that provides

information about such things as battery status, RSSI, network status, and new messages. One

of the ways to implement annunciators is using the BREW widgets and forms. More

information about widgets and forms can be found in the documentation shipped with the

widgets and forms package. The annunciator bar can also be defined as part of the Rootform (a

widget and forms term) or can be part of a particular applet (depending on the UI

requirements/design). OEMs can also choose to have an annunciator bar area separate from the

application display area.

QUALCOMM Proprietary
45

Implementing Display Support

The various annunciators on the phone can be defined as individual widgets that listen to the

appropriate models for change in status. For instance, you can define a MessageAnnunModel

that has state information about new voicemail and pages SMS, EMS and MMS messages. It

can also have state information about message send (i.e. sending such messages as SMS,

EMS, MMS). The messaging widget (or widgets) can register a listener with this model so that

they can be notified about state changes. The widgets can then choose to update themselves

appropriately on a state change notification from the model.

See AEESMSMsgModel.c and AEESMSMsgModel.h. These files implement ISMSMsgModel

which maintains message status for SMS/EMS/MMS send/receive, used by the messaging

annunciator widget.

Using the Brew Simulator

The Porting Kit includes the BREW Simulator for Windows environments, and also the

Microsoft Visual Studio workspace for Simulator, which includes:

• All the OEM sources that can be modified

• References to several libraries, including BREWWin.lib (BREW library for Windows),

with which the Simulator links before building the executable

An example follows.

QUALCOMM Proprietary
46

Implementing Display Support

Verifying implementation

Use OAT to verify your implementation of the display interfaces. See the BREW™ Porting

Evaluation Kit Test Case Online Help in the PEK documentation set for details.

QUALCOMM Proprietary
47

Understanding the Generic
Serial Interface

Serial I/O (SIO) in a PC involves communicating with an external device by connecting it to the

PC’s 9-pin connector. This enables an external device to communicate with the PC software

by using serial communication. The same concept, applied to BREW, allows a variety of

devices to communicate with BREW. The SIO closely models the Windows SIO model, while

introducing a plug-and-play mechanism for BREW to detect any connected BREW devices.

In general, mobile manufacturers configure mobile devices in data mode, in which an AT

command processor (ATCOP) accepts standard AT-style modem commands. The mobile

device acts like a modem to the laptop and initiates data service connections in response to

ATDxxx dialing commands. When a data connection is established, data to and from the laptop

is passed through unmodified, and the ATCOP is then out of the loop. In this way, a laptop

connects by using the phone as a modem.

By enabling BREW SIO, the device communicates with a BREW entity, such as a dynamic

application or a BREW internal object. Once the link is established between the application and

the device, it determines the protocol with which to facilitate communication. The BREW SIO

acts as a dumb pipe.

Two aspects of the BREW SIO are based on the initiating party. The management of the

connection setup varies based on the initiator. The device-initiated service involves a well-

defined protocol to discover which application or internal entity services the device.

Device-initiated service

When a device is connected, it will initially communicate with the ATCOP. By issuing a

command, the device informs the ATCOP to transfer the control of the particular SIO

connection to the BREW SIO Command Processor (BSCOP). When the device gets a positive

response from BREW, it issues commands to the BSCOP. These commands allow the device

to communicate with a BREW application or perform other tasks.

QUALCOMM Proprietary
48

Understanding the Generic Serial Interface

Application-initiated service

BREW SIO also allows an application to unilaterally seize control of a serial port. This action

succeeds or fails depending on what other client is currently active on that port. ATCOP and

BSCOP usually yield to a requesting application, but another client, such as service

programming, might refuse to release the port. The situations that prevent an application from

gaining control of the port differ from OEM to OEM.

Application-initiated connections may be necessary to initiate communication with devices that

are not BREW-aware. In application-initiated scenarios, however, the user must somehow

coordinate connecting the device with launching the appropriate application.

Application design considerations

Some application design considerations are discussed in the following paragraphs.

Disconnection of a device while talking to an application

In device-initiated service, if the device is disconnected, the port reverts to the ATCOP. Any

further read/write calls to IPort by the application result in errors. The application can reregister

for a new connection or a reconnection of the previous port by calling Writeable().

In application-initiated service, if the device is disconnected, the application owns the port. Any

further read/write calls result in errors. However, the application could give control of the port

back to the ATCOP or retain it to do more work.

Exiting an application during device communication

The application closes the serial port object; this action causes the port to revert to the ATCOP.

If the application is reentered, the usual process of obtaining a serial port takes place.

General application behavior with unexpected data

Applications that explicitly open a serial port must be mindful of the normal functionality of

BSCOP and ATCOP and respond appropriately when connected to devices that expect to

communicate with ATCOP or BSCOP. In general, the application should close the port and let

BREW decide the next action.

QUALCOMM Proprietary
49

Understanding the Generic Serial Interface

DTR transition is the method used by the UARTs to detect device disconnections. In some

cases, reliable detection may not be possible; for example, when an application is

communicating to a particular device and another device replaces it. It is a good practice on

the part of the application to detect this change due to errors it encounters and close the port

so the control reverts to ATCOP.

Using the BSCOP

The following table includes descriptions of commands issued by the connected device when

in BSCOP mode. These commands allow the BSCOP to initiate communication with a BREW

application.

Command Description Responses

$BREW AT$BREW is the command to the
mobile device’s ATCOP to transfer
control to BREW. If BSCOP is already in
control, this is interpreted as a $BREW
command with a tag of AT, and the
resulting response packet, including the
tag, is ATOK.

As a result, when AT$BREW is sent to
initiate communication, the device
synchronizes, whether the port was in
ATCOP or BSCOP mode.

OK—The mobile device ATCOP’s
response to hand the SIO to BREW.

ERROR: The mobile does not
understand the AT$BREW
command (for example, No BREW
SIO at that particular port).

QUALCOMM Proprietary
50

Understanding the Generic Serial Interface

DEV:<devid>:<args> This command initiates communication
with a BREW application or object.
BREW tries to find the handler using the
identifier string. If BREW finds the
handler, the START response is issued
to the device. On failure, the ERROR
response is issued.

The <devid> value is the registry key
used to find the application handler.
These keys should be of a regular form,
such as <company code>-
<devicename>, to avoid naming
conflicts. The devid is limited to the
printable ASCII characters excluding “*”
(colon).

The <args> value will be passed to the
launched application. <args> value is a
string of bytes excluding the <CR> and
<LF> characters.

OK—The command to the device
indicating that the handler is found,
and the application is launched.
When the START command is
issued, the device and the BREW
entity are connected and ready to
communicate using their predefined
protocol.

ERROR:<xxxx>—Could not launch
handler. <xxxx> gives the error code
(from AEEError.h) as four
hexadecimal digits. Possible values
specific to SIO include:
AEE_SIO_NOHANDLER (handler
was not found). Other values, such
as ENOMEMORY, are always
possible.

VER This command gets the BREW version. OK:<ver>—<ver> = BREW version
string, in a x.y.z.b. format (for
example, 1.0.1.18).

APP:<clsid>:<args> This command gives the CLSID of the
application to open. BSCOP proceeds to
launch an application as it does with the
DEV command, although its ClassID,
instead of a handler lookup, specifies
the application. This is less extensible
than the DEV command, but it is useful
for debugging and development. The
<clsid> is a string of hexadecimal letters
that are constructed into a BREW
ClassID. <args> is the same as defined
in DEV.

OK—As in DEV.

ERROR:<xxxx>—As in DEV.

Command Description Responses

QUALCOMM Proprietary
51

Understanding the Generic Serial Interface

Command and response framing

Each command is contained in a packet that begins with a 2-byte tag and ends with a <CR>

(ASCII 0x0D) character. An <LF> (ASCII 0x0A) character following a command packet is

ignored. Response packets begin with a 2-byte tag and end in <CR><LF> (ASCII 0x0D 0x0A).

The maximum packet size supported by BSCOP is 512 bytes.

Tags sent with commands should consist of two alphanumeric ASCII characters. The tag

attached to a response is the same as the tag sent with its corresponding command. Devices

use this mechanism to disambiguate responses. By sending a different tag with every

command, the device determines from which command a response results. This is useful in

synchronizing communication when establishing the connection or recovering from data

errors.

Examples of BSCOP command sequences

Lines starting with D: represent data sent by the device, and P: represents data sent by the

handset to the device.

D: 01AT$BREW

P: 01ATOK

D: 02VER

P: 02OK:3.0.0.1

URL:<url> BSCOP calls ISHELL_Browse URL()
with the named URL. This launches a
browser, MobileShop™, or some other
application, depending upon which
application has registered support for
the URL scheme. After failing to launch
a required application, a device could
use MobileShop URLs to point the user
to the required download option. <url> is
of same format as the DEV: <args>.

OK—Indicates that the associated
application was launched.

ERROR:<xxxx>—Indicates that an
associated application could not be
launched. Any error in AEEError.h
was not returned, but, in particular,
the following are most likely:

• ESCHEMENOTSUPPORTED
(a BREW error code)

• ENOMEMORY

END Informs BREW to relinquish command
to the mobile ATCOP.

OK—This is the only expected
response for the command.

Command Description Responses

QUALCOMM Proprietary
52

Understanding the Generic Serial Interface

D: 03DEV:BREW.siotest

P: 03ERROR 0C01

D: 04DEV:BREW.siotest

P: 04OK

D: 99END

P: 99OK

The device is not required to wait for a response before sending another command. For

example, this sequence could occur:

D: 02VER

D: 03DEV:kb

P: 02OK:3.0.0.1

P: 03OK

IPort interface

A new BREW interface models duplex communications. This interface extends the ISource

interface by adding the Write and Writeable members as shown:

AEEINTERFACE(IPort){
 INHERIT_ISource(IPort);
 Int (*GetLastError)(IPort * po);
 int32 (*Write)(IPort *pme, char *pBuf, int32 cbBuf);
 void (*Writeable)(IPort *pme, AEECallback *pcb);
 int (*IOCtl)(IPort *po, int nOption, uint32 dwVal);
 int (*Close)(IPort * po);
 int (*Open)(IPort * po, const char * szPort);
};

The GetLastError() function reports the last error that occurred during the operation of the

IPort. The return value is one of the global BREW error codes defined in AEEError.h. The

Open() function allows the application to bind the IPort to a physical port.

QUALCOMM Proprietary
53

Understanding the Generic Serial Interface

When an instance of AEECLSID_SERIAL is created, an IPort is returned that is not associated

with any physical port. IPORT_Open() indicates the name of the desired port.

Open() is a non-blocking call that might return AEEPORT_WAIT when it cannot be

immediately satisfied. The caller then uses IPORT_Writeable() to receive a notification of

subsequent attempts.

When calling Open(), the caller indicates the serial port desired by a zero-terminated string

containing its name. BREW defines some names for types of ports that are generally available

across many devices. Serial port names consist of short ASCII sequences, allowing different

mobile devices to support different ports in an extensible manner. Usually the main port at the

bottom of a phone is an UART. All the UARTs are represented with strings,

AEE_PORT_SIO1(PORT1), AEE_PORT_SIO2(PORT2), and the like. The USB ports are

represented using USB1, USB2, and the like. BREW also defines a special name,

AEE_PORT_INCOMING (inc), that establishes a link with a device attempting

communications with an application.

Device-initiated usage

If a device is connected to BREW, and BREW starts an application based on the DEV: stringt,

the application needs an IPort to communicate with the device.

When an application capable of communicating using SIO starts, it creates an IPort interface

using the CLSID of AEECLSID_SERIAL, and then calls Open() with AEE_PORT_INCOMING.

If Open() returns AEEPORT_WAIT, the application waits for the device-initiated connection by

registering a callback using Writeable(). When a device is connected, the Writeable callback

is called, prompting the application to retry the Open() operation, which succeeds.

If you start the application without connecting the device, the application follows a similar

process and waits until the device is connected. This way, a device connected after its

application launches is still connected. Until the device is connected, Open() continues to

return AEEPORT_WAIT, and Writeable() does not fire.

AEESIO_PORT_INCOMING applies only to devices that request the running application. If

one application requests AEESIO_PORT_INCOMING and a device is then connected that

requests a different application, the first application’s Open() is not satisfied. Instead, the other

application launches, and its attempt to open AEESIO_PORT_INCOMING succeeds.

AEESIO_PORT_INCOMING refers to any serial port. Imagine a phone with multiple UARTs or

multiple USB virtual serial ports, each of which accepts device-initiated connections.

QUALCOMM Proprietary
54

Understanding the Generic Serial Interface

Application-initiated usage

The application creates an IPort interface using the Open() function. The port string argument

determines which port opens. The port IDs supported by BREW are given in AEESio.h. For

example, to open the main serial port, the AEESIO_PORT_SIO1 string is used.

The Open() could fail due to multiple reasons such as nonavailability (service programming in

progress, Mobile busy, no-permission for open), no such port, and the like. In this case, the

Writeable callback is called, and a call to GetLastError() reports the error particulars.

Closing a port

When an IPort is closed, it is dissociated from the physical port, and the port is returned to the

ATCOP.

Port objects are closed implicitly when all references to the object are released, but the Close()

function allows explicit closing. This function is convenient when different layers or modules in

the system use the same port object. This function also allows an IPort to be reused, because

when it is in the closed state, Open() can be called again.

Serial port configuration

The IOCtl flags, AEESIO_IOCTL_SCONFIG and AEESIO_IOCTL_GCONFIG, set and get

configuration using the AEESIOConfig data structure as defined in AEESio.h. AEESIOConfig

has information to control a UART such as baud rate, parity, stop bits, and the like. In the case

of virtual serial ports, such as USB-based virtual serial ports, some or all of these settings

might be ignored. As all entries of the AEESIOConfig may not be supported by an

implementation the IPort, the return value of SUCCESS may not mean that all options are set.

Getting the configuration, after setting it, returns the current changed configuration. For

example, if a specific baud rate cannot be set, the nearest supported baud rate is set. Setting

a baud rate to 38500 may actually set the real configuration to the nearest supported baud rate

of 38400.

The IOCtl also supports options to adjust internal buffer sizes, setting triggers (minimum

number of bytes before making the state readable, and the like) or doing efficient reads.

QUALCOMM Proprietary
55

Understanding the Generic Serial Interface

Application registration for supported devices

Applications that handle specific devices must register with BREW so they can be informed on

request. This registration information is stored in the app’s MIF, which can be updated using

the MIF Editor.

To update application registration information

1. In the MIF Editor, click Extensions and New in the Exported MIME types section.

2. Enter the device id string in the MIME Type held.

3. Enter the handler type in the base class.

NOTE: The handler type for SIO devices is defined in the AEESio.h as

AEECLSID_HTYPE_SERIALDEVICE (0x01011be6). The handler ClassID is the

same as the app’s CLSID.

Using DMSS changes to enable BREW SIO

QUALCOMM’s DMSS chipset software supports SIO, with a limitation that it is not readily

exposed to application-level software such as BREW. This document lists the required DMSS

changes based upon 6050 chipset DMSS software. As your target chipset may be different,

the following instructions are only a case study.

There are two primary tasks for enabling SIO:

• Enable the Runtime Device Mapper (RDEVMAP) system to allow dynamic services

and BREW services to control the ports.

• Enable an AT command AT$BREW in the ATCOP that, when called, transfers the

control of the port to the BREW service.

The changes are in two subsystems, the RDEVMAP and the ATCOP.

The RDEVMAP is a service implemented in rdevmap.c that manages the distribution of

devices (Serial, USB ports) to requested parties by providing an API. BREW SIO uses this

feature to acquire and release ports.

NOTE: This feature must be enabled in DMSS by defining FEATURE_RUNTIME_DEVMAP.

QUALCOMM Proprietary
56

Understanding the Generic Serial Interface

BREW SIO implementation also requires changes in the ATCOP. When the AT$BREW

command is issued to the ATCOP, it gives control of the port to BREW. The changes in the ds*

files listed below facilitate this behavior.

RDEVMAP changes are in the following files:

• rdevmap.h

• rdevmap.c

ATCOP changes are in the following files:

• dsatcop.h

• dsatcopi.h

• dsatcop.c

• dsatdat.c

NOTE: Later versions of DMSS made the ATCOP changes easier.

File changes

File changes are shown in the context of existing code. The Before and After sections show

complex changes. In some cases, changes are highlighted as part of the existing code.

The following examples are based on the MSM6050 header and source files. Line numbers

may vary.

File: rdevmap.h

Add a new BREW serial port service to rdm_service_enum_type

Line: 99

Before:

/*--
 Type that defines the Services that can utilize a serial port
--*/
typedef enum
{
 RDM_NULL_SRVC = -1, /* The NULL (no) service */

QUALCOMM Proprietary
57

Understanding the Generic Serial Interface

 RDM_DIAG_SRVC = 0, /* DIAG Task */
 RDM_DATA_SRVC, /* Data Service Task */
 RDM_BT_HCI_SRVC, /* Bluetooth Task */
 RDM_MMC_SRVC, /* MMC over USB */
 RDM_NMEA_SRVC, /* NMEA service */
#ifdef FEATURE_ONCRPC
 RDM_RPC_SRVC, /* ONCRPC task */
#endif
 RDM_SRVC_MAX /* Last value indicator (must be last) */
} rdm_service_enum_type;

After:

/*---
 Type that defines the Services that can utilize a serial port
---*/
typedef enum
{
 RDM_NULL_SRVC = -1, /* The NULL (no) service */
 RDM_DIAG_SRVC = 0, /* DIAG Task */
 RDM_DATA_SRVC, /* Data Service Task */
 RDM_BT_HCI_SRVC, /* Bluetooth Task */
 RDM_MMC_SRVC, /* MMC over USB */
 RDM_NMEA_SRVC, /* NMEA service */
#ifdef FEATURE_ONCRPC
 RDM_RPC_SRVC, /* ONCRPC task */
#endif

 RDM_DYNAMIC_SRVC1, /* Dynamic service */
 RDM_DYNAMIC_SRVC2, /* Dynamic service */
 RDM_DYNAMIC_SRVC3, /* Dynamic service */
 RDM_DYNAMIC_SRVC4, /* Dynamic service */
 RDM_DYNAMIC_SRVC5, /* Dynamic service */
 RDM_DYNAMIC_SRVC_LAST, /* Dynamic service */

 RDM_SRVC_MAX /* Last value indicator (must be last) */
} rdm_service_enum_type;

New function prototypes

Add the following at the end of the rdevmap.h file.

sio_port_id_type rdm_register_new_service(rdm_device_enum_type dev,
 rdm_service_open_func_ptr_type open_fn,
 rdm_service_close_func_ptr_type close_fn,
 rdm_service_enum_type *pService);

void rdm_unregister_service(rdm_service_enum_type service; rdm_device_enum_type dev);

void rdm_data_got_atbrew(void);

QUALCOMM Proprietary
58

Understanding the Generic Serial Interface

File: rdevmap.c

New functions before rdm_init() function

Line:309

sio_port_id_type

 rdm_register_new_service(rdm_device_enum_type dev,

 rdm_service_open_func_ptr_type open_fn,

 rdm_service_close_func_ptr_type close_fn,

 rdm_service_enum_type *pService)

{

 int service;

 if(!open_fn || !close_fn || dev <= RDM_NULL_DEV || dev >= RDM_DEV_MAX) {

 return SIO_PORT_NULL; //wrong arguments

 }

 //Make sure the requested device is compiled in and available...

 if(rdm_device_to_port_id_table[dev] == SIO_PORT_NULL) {

 return SIO_PORT_NULL; //wrong arguments

 }

 //first find an open service...

 for(service = RDM_DYNAMIC_SRVC1; service <= RDM_DYNAMIC_SRVC_LAST; service++) {

 if(rdm_service_open_routines[service] == NULL)

 break;

 }

 if(service > RDM_DYNAMIC_SRVC_LAST) {

 return SIO_PORT_NULL; //failed, no free ports...

}

 rdm_service_open_routines[service] = open_fn;

 rdm_service_close_routines[service] = close_fn;

 rdm_configuration_table[service][dev] = dev;

 *pService = service;

 return rdm_device_to_port_id_table[dev];

}

void rdm_unregister_service(rdm_service_enum_type service, rdm_device_enum_type dev)

QUALCOMM Proprietary
59

Understanding the Generic Serial Interface

{

 if(service <= RDM_NULL_SRVC || service >= RDM_SRVC_MAX) {

 return;

 }

 rdm_service_open_routines[service] = NULL;

 rdm_service_close_routines[service] = NULL;

 rdm_configuration_table[service][dev] = RDM_SRVC_NOT_ALLOWED;

}

void rdm_init_config_table(void)

{

 int service;

 for(service=RDM_DIAG_SRVC; service < RDM_SRVC_MAX; service++)

 {

 int dev = RDM_NULL_DEV;

 rdm_configuration_table[service][dev]=RDM_NULL_DEV;

 dev++;

 for(; dev < RDM_DEV_MAX; dev++)

 {

 rdm_configuration_table[service][dev]=RDM_SRVC_NOT_ALLOWED;

 }

 }

}

void rdm_init_current_config_table(void)

{

 int i;

 //first set the defaults...

 for(i=RDM_DIAG_SRVC; i < RDM_SRVC_MAX; i++)

 {

 rdm_current_config_table[i] = RDM_NULL_DEV;

 }

}

In function rdm_init()

Line:477

Before:

rdm_menu_init();

QUALCOMM Proprietary
60

Understanding the Generic Serial Interface

After:

rdm_menu_init();
rdm_init_current_config_table();

Replace the rdm_send_service_cmd() with the following code

LOCAL boolean rdm_send_service_cmd
(
 rdm_service_enum_type service,
 rdm_command_enum_type port_cmd,
 rdm_device_enum_type device
)
{

 sio_port_id_type sio_port = rdm_device_to_port_id_table[device];

#ifdef RDM_DEBUG
#error code not present
#endif

 if((service <= RDM_NULL_SRVC) ||
 (service >= RDM_SRVC_MAX))
 {
 ERR_FATAL("Invalid Service Task type", 0, 0, 0);
 }

 if(rdm_service_open_routines[service] == NULL ||
 rdm_service_close_routines[service] == NULL) {
 return FALSE;
 }

 if(port_cmd == RDM_OPEN_PORT)
 {
 (rdm_service_open_routines[service])(sio_port);
 }
 else if(port_cmd == RDM_CLOSE_PORT)
 {
 (rdm_service_close_routines[service])();
 }
 else
 {
 ERR_FATAL("Invalid Service Task type", 0, 0, 0);
 }

 return(TRUE);

} /* rdm_send_service_cmd */

Replace rdm_register_close_func() with the following code:

void rdm_register_close_func
(
 rdm_service_enum_type service,
 rdm_service_close_func_ptr_type close_func
)
{

QUALCOMM Proprietary
61

Understanding the Generic Serial Interface

#ifdef RDM_DEBUG
#error code not present
#endif

 if((service <= RDM_NULL_SRVC) ||
 (service >= RDM_SRVC_MAX))
 {
 ERR_FATAL("Invalid Service Task type", 0, 0, 0);
 }

 rdm_service_close_routines[service] = close_func;

} /* rdm_register_close_func() */

Replace rdm_register_open_func() with the following code:

void rdm_register_open_func
(
 rdm_service_enum_type service,
 rdm_service_open_func_ptr_type open_func
)
{

#ifdef RDM_DEBUG
#error code not present
#endif

 if((service <= RDM_NULL_SRVC) ||
 (service >= RDM_SRVC_MAX))
 {
 ERR_FATAL("Invalid Service Task type", 0, 0, 0);
 }

 rdm_service_open_routines[service] = open_func;
} /* rdm_register_open_func() */

void rdm_data_got_atbrew(void)
{
 int service;

#ifdef RDM_DEBUG
#error code not present
#endif

 rdm_device_enum_type dev = rdm_get_device(RDM_DATA_SRVC);

 //first find an open service...
 for(service = RDM_DYNAMIC_SRVC1; service <= RDM_DYNAMIC_SRVC_LAST; service++)
 {
 if(rdm_configuration_table[service][dev] == dev)
 break;
 }

 if(service <= RDM_DYNAMIC_SRVC_LAST)
 {
 rdm_assign_port(service, dev, NULL);
 }

QUALCOMM Proprietary
62

Understanding the Generic Serial Interface

} /* rdm_data_got_atbrew() */

In function rdm_set_bt_mode

Line 1877

After the first INTLOCK(), add the following line of code:

rdm_init_config_table();

QUALCOMM Proprietary
63

Configuring Devices

Before BREW can operate properly, you must implement the configuration functions listed in

this section.

Physical and hardware characteristics

The following functions are used to retrieve the current handsets’ physical and hardware

characteristics:

• OEM_GetDeviceInfo()

• OEM_GetDeviceInfoEx()

• OEM_GetConfig()

AEEDeviceItem is the data type passed to OEM_GetDeviceInfoEx(). OEMs must implement

support for all the defined device items, which are described in the BREW API Reference

guide under the AEEDeviceItem datatype. The items are defined are in the file AEEShell.h.

AEEConfigItem is the data type passed to OEM_GetConfig. OEMs must implement support

for all the defined config items, which are described in the BREW OEM API Reference under

the OEM_GetConfig and OEM_SetConfig functions.

Some device and config item support is provided in the files OEMConfig.c and OEMSVC.c.

OEMs must complete the implementation for their device where indicated, and review the

remaining implemenations to verify they are suitable for their device.

BREW heap

The function, OEM_GetinitHeapBytes, is used to configure the size and location of the BREW

supervisor and user mode heaps. The Brew heap is used by all BREW applications, and the

size and number of BREW applications, which can execute simultaneously on a device, is

dictated by the amount of heap made available to BREW.

QUALCOMM Proprietary
64

Configuring Devices

Certain BREW extensions may have certain memory requirements so it is recommended that

you make the largest possible memory available to BREW. If BRIDLE is enabled on the

handset build, you must dedicate an additional supervisor heap, which is used for memory

allocations of the BREW code for supervisor mode or BREW Extensions. At a minimum, this

supervisor heap must be 64 KB. The actual size needed may be more than this if the

ICAMERA interface is implemented or if any static extensions that require supervisor heap

allocations are implemented.

Download services parameters

The following functions are used to retrieve/set the configuration parameters related to the

download services:

• OEM_GetConfig()

• OEM_SetConfig()

BREW applications with system privileges can retrieve/set the configuration parameters using

the ICONFIG interface.

Configuring R-UIM-based devices

For R-UIM-based devices, the configuration parameters must come from either the ME

(Mobile Entity) or the R-UIM. If you are working with an operator who requires an R-UIM, you

must comply with the following division of the sources from which information is obtained. The

sources are either ME (defined as the R-UIM-based mobile station without an R-UIM), or R-

UIM.

Configuration Parameter ME R-UIM
CFGI_ALLOW_3G_2G_FAILOVER X

CFGI_APP_KEY_1 X

CFGI_APPX5_MPC_ADDR X

CFGI_APPX5_MPC_PORT X

CFGI_AUTOSTART X

CFGI_AUTOSTARTARGS X

CFGI_BUSY_CURSOR_OFFSET X

QUALCOMM Proprietary
65

Configuring Devices

CFGI_CACHED_RESOURCES X

CFGI_CARDID_LEN X

CFGI_CARDID X

CFGI_CLOSE_KEYS X

CFGI_DEBUG_KEY X

CFGI_DISALLOW_DORMANCY X

CFGI_DNS_IP1 X

CFGI_DNS_IP2 X

CFGI_DORMANCY_NO_SOCKETS X

CFGI_DOWNLOAD : dwCarrierID X

CFGI_DOWNLOAD : dwPlatformID X

CFGI_DOWNLOAD : bBKey X

CFGI_DOWNLOAD : bAKey X

CFGI_DOWNLOAD : szServer X

CFGI_DOWNLOAD : wFlags X

CFGI_DOWNLOAD : nAuth X

CFGI_DOWNLOAD : nPolicy X

CFGI_DOWNLOAD_BUFFER X

CFGI_DOWNLOAD_FS_INFO X

CFGI_FILE_CACHE_INFO X

CFGI_GPSONE_LOCK X

CFGI_GPSONE_SVRIP X

CFGI_GPSONE_SVRPORT X

CFGI_GPSONE_TRANSPORT X

CFGI_GSM1X_IDENTITY_PARAMS X

CFGI_GSM1X_PRL X

Configuration Parameter ME R-UIM
GFGI_GSM1X_RTRE_CONFIG X

CFGI_GSM1X_SID_NID_PARAMS X

CFGI_HTTP_BUFFER X

CFGI_ISTATIC_SCROLL X

CFGI_KB_AUTOREPEAT X

CFGI_MAX_DEMO_ITEMS X

CFGI_MAX_DISPATCH_TIME X

CFGI_MIN_IDLE_TIME X

CFGI_MODULE_FSLIMIT X

QUALCOMM Proprietary
66

Configuring Devices

Before you call AEE_Init(), make sure that the R-UIM initialization completes and that the valid

SID can be obtained from the R-UIM. You can verify this by ensuring that OEM_GetConfig()

for CFGI_SUBSCRIBERID, CFGI_SUBSCRIBERID_LEN, CFGI_CARDID and

CFGI_CARDID_LEN returns correct values.

If a SID changes after BREW is initialized, BREW must be notified of the new value by means

of the IDOWNLOAD_SetSubscriberID() function. Refer to the BREW SDK API Reference

Online Help for information.

Following is sample code that you can use when the SID changes:

int SetSubscriberID(const char * pszSID, int nLen)
{
 int nErr;
 IShell * pIShell = AEE_GetShell();
 IDownload * pIDownload = NULL;

 if (!pIShell) return EFAILED;
 nErr = ISHELL_CreateInstance(pIShell, AEECLSID_DOWNLOAD, (void **)
&pIDownload);
 if (nErr == SUCCESS && pIDownload)
 {
 IDOWNLOAD_SetSubscriberID(pIDownload, pszSID, nLen);
 IDOWNLOAD_Release(pIDownload);
 }
 return nErr;
}

CFGI_MOBILEINFO : nCurrNAM X

CFGI_MOBILEINFO : dwESN X

CFGI_MOBILEINFO_szMobileID X

CFGI_NET_CONNTIMEOUT X

CFGI_OFFLINE_PPP_TIMEOUT X

CFGI_SAFEMODE_STARTMODE X

CFGI_SAFEMODE_TIMER X

CFGI_SCREEN_SAVER X

CFGI_SLEEP_TIMER_RESOLUTION X

CFGI_SUBSCRIBERID X

CFGI_SUBSCRIBERID_LEN X

CFGI_SYSMEM_SIZE X

CFGI_WEB_IDLECONNTIMEOUT X

QUALCOMM Proprietary
67

Configuring Devices

R-UIM interface

The R-UIM interface is a collection of functions with the following capabilities:

• Verifies the R-UIM card connection.

• Returns the current R-UIM status.

• Compares the designated card holder verification (CHV) on the R-UIM with the PIN

passed.

• Changes the designated CHV on the R-UIM to the PIN passed.

Overview of a R-UIM-based device

In non-R-UIM-based systems, the ESN is used for authentication of mobile stations through

the CAVE algorithm. R-UIM-based mobile stations can use either the ME ESN or R-UIM ID for

CAVE.

The contents of an R-UIM are organized into Dedicated Files (DF) and Elementary Files (EF).

There are three relevant EFs:

• EF 6F38 (ESN_ME): Where the ME’s ESN is stored. The ME transfers its ESN to

this EF when the ME detects that a new R-UIM is inserted into the ME.

• EF 6F31 (user identity module ID [UIMID]): The ID of the R-UIM.

• EF 6F42 (UIMID indicator): Dictates whether ESN_ME or the UIMID is used for the

CAVE. The value 0 indicates ESN_ME is used, and the value 1 indicates UIMID is

used.

Some carriers require that UIMID be used for authentication, however, for the purpose of

BREW porting, ESN_ME must be used for any ESN-related operations (for example, in the

structure returned through OEM_GetConfig() for the item CFGI_DOWNLOAD).

QUALCOMM Proprietary
68

Configuring Devices

Overview of BREW on a R-UIM-based device

To prevent illegal copying of BREW applications from one device to another, BREW encrypts

the application files when they are downloaded. Some of the device-specific characteristics,

such as the ESN, are used while encrypting the files. BREW allows only valid and properly

encrypted applications devices. When applications are moved to another device or if the

characteristics of the device, such as the ESN, change when the R-UIM card is swapped, the

applications are declared invalid and deleted from the device.

BREW relies on the fact that the device’s ESN does not change when the R-UIM card is

changed or swapped. The Subscriber ID (SID) is allowed to change when the R-UIM Card is

swapped.

Porting BREW on R-UIM devices

You must follow these steps to port BREW on a R-UIM-based device:

1. Verify that the OEMRUIM.c file is included in the device build. All functions defined

in OEMRUIM.c must be supported.

NOTE: The reference implementation provided with the Porting Kit for MSM

Platforms provides an implementation for all functions.

2. Verify that all address book functions are supported—the IAddrBook interface must

be supported for accessing AddrBook on a R-UIM device. To create an instance of

IAddrBook to access the address book on a R-UIM device, the ClassID,

AEECLSID_ADDRBOOK_RUIM, will be used during ISHELL_CreateInstance().

NOTE: The reference file OEMAddrBookRUIM.c provides the implementation for

access to the address book on the R-UIM card.

3. Ensure that the flag DIF_SID_ENCODE is not set. This means that, when

OEM_GetConfig() is invoked for the item CFGI_DOWNLOAD, you must ensure

that the flag DIF_SID_ENCODE is not set in the wFlags member of the

AEEDownloadInfo structure.

QUALCOMM Proprietary
69

Configuring Devices

4. Ensure that a valid ME ESN is returned inside OEM_GetConfig() for

CFGI_MOBILE_INFO. The following are the ME ESN requirements:

• The dwESN member of the AEEMobileInfo structure must be a valid ME ESN
and must uniquely identify this device. No two devices share the same ESN.

• The ME ESN must be kept constant and must NOT change when the R-UIM
card is swapped.

• The ME ESN is also used by application developers while generating test
signatures for the device. Hence, you must allow application developers to
obtain the ESN of a device.

5. By default, BREW allows all non-subscription applications to be used even when

the R-UIM card originally used to download the applications is swapped or

changed. Subscription-based applications are used only by the original user who

downloaded the applications. To override this behavior and ensure that all

applications can be used only by the original user who downloaded them, set the

flag DIF_SID_VALIDATE_ALL inside the wFlags member of the AEEDownloadInfo

structure when OEM_GetConfig() for CFGI_DOWNLOAD is invoked.

NOTE: Setting this flag prevents BREW applications from being executed when

the R-UIM card originally used to download the applications is changed.

6. By default, BREW allows deletion of BREW applications only by the owner who

downloaded the applications. To override this behavior and allow one R-UIM user

to delete applications owned by another, set the flag DIF_RUIM_DEL_OVERRIDE

inside the wFlags member of the AEEDownloadInfo structure when

OEM_GetConfig() for CFGI_DOWNLOAD is invoked.

7. Allow the IAddrBook interface to access the address book on the R-UIM card.

BREW applications use the ClassID AEECLSID_ADDRBOOK_RUIM to create an

instance of the IAddrBook interface; this allows the application to access the

AddressBook on the R-UIM card.

8. Provide a menu item which shows the mobile station’s ME ESN. This item is critical

to developers, who need to create test signatures based on the ME ESN.

9. If an ME ESN is not required by the carrier and cannot be assigned to each device,

you must ensure that the dwESN member of the AEEMobileInfo structure gets

assigned a unique 32-bit unsigned integer in the intended carrier’s network.

NOTE: After it is assigned in the factory, this number remains unchanged

throughout the life span of the mobile station. This could be a unique serial number

assigned by the manufacturer.

QUALCOMM Proprietary
70

Configuring Devices

Verifying implementation

The following are the set of tests you must perform to ensure the successful porting of BREW

on a R-UIM-based device.

To run test 1

1. Download subscription and non-subscription BREW applications on a R-UIM-

based device.

2. Change the R-UIM card on the device.

The applications should stay intact and are not deleted.

If the DIF_RUIM_DEL_OVERRIDE flag is set, you can delete applications; if not

set, you cannot delete applications.

If the DIF_SID_VALIDATE_ALL flag is set, you cannot run any application

(subscription or non-subscription); if not set, you can run only non-subscription
applications.

To run test 2

1. Download BREW applications on a R-UIM-based device.

2. Change the R-UIM card and power-cycle the device.

3. Replace the original card.

You should be able to execute each of the BREW applications and also delete each
one of them.

To run test 3

In a BREW application, create an instance of the IAddrBook interface using the

classID AEECLSID_ADDRBOOK_RUIM.

The application should be able to access the address book on the R-UIM card.

NOTE: For all China Unicom phones, ensure that the DIF_SID_VALIDATE_ALL

and DIF_RUIM_DEL_OVERRIDE flags are set.

QUALCOMM Proprietary
71

Configuring Devices

Maximum path length and mapping

The following functions are used to determine the maximum path length and the mapping

between BREW and native directory names:

• OEMFS_GetMaxPathLength()

• OEMFS_GetNativePath()

• OEMFS_GetBREWPath()

Appearance

To configure the appearance of UI items, you can implement the optional function

OEM_GetItemStyle():.

See the BREW™ OEM API Reference Online Help for MSM Platforms for more information

on the functions.

Packet Data Dormancy

Before version 3.0.3, BREW could initiate mobile packet data dormancy, depending on OEM

configuration. In BREW 3.0.3, BREW’s mobile initiated dormancy code was removed, which

means the CFGI_DISALLOW_DORMANCY and CFGI DORMANCY _NO_SOCKETS

configuration items no longer exist. Even though BREW does not initiate packet data

dormancy, it still supports it (applicable to CDMA 1x). Lower layers, such as the AMSS, are

responsible for managing and initiating dormancy.

BREW supplies the INETMGR_SetDormancyTimeout() API for setting the dormancy time-out

value which is the amount of time after which mobile initiated dormancy should be initiated, if

during this whole time the packet data call was idle. It is propagated to lower layers through

OEMNet_SetDormancyTimeout().

In BREW 3.0.3 and later, OEMs that disabled BREW initiated dormancy by setting

CFGI_DISALLOW_DORMANCY to TRUE, can achieve the same behavior by using an empty

implementation of OEMNet_SetDormancyTimeout() that just returns DSS_SUCCESS,

without changing the packet data inactivity timer value.

QUALCOMM Proprietary
72

Configuring Devices

A new CFGI_DORMANCY_TIMEOUT_DEFAULT configuration item may be used to set a

default dormancy time out value for the device. IN BREW 3.0.3 and later, OEMs that used to

set CFGI_DORMANCY_NO_SOCKETS to TRUE, can achieve similar behavior by setting the

default linger value to the max value, while setting the default dormancy time out value to a

normal value, such as the default 30 seconds.

BREW file access restrictions

The purpose of this feature is to impose restrictions on remotely accessing certain types of

files on a device. Remote access refers to accessing files on a device through the serial

interface using diagnostics, such as EFS Explorer.

This section discusses the steps to enable the access restrictions and the architecture of the

remote file access restrictions. It describes how to discover whether or not your DMSS builds

contain these features, and, if so, how to incorporate them.

Architecture

The following are required:

1. Registration function OEMFS_RegRmtAccessChk() that can be invoked by

BREW.

2. Invoking the AEE layer callback function when a remote file access request is

made to a file contained in one of the registered directories.

3. Blocking or allowing file access depending on the response of the callback.

The first requirement is met by providing the following function to the AEE layer:

void OEMFS_RegRmtAccessChk(const char **pszDirList,
uint32 nListElements,
PFNCHKRMTACCESS pfn)

This function has been provided for you in OEMFS.c; no modifications are necessary. This

function is called during device initialization by the AEE layer and is used to register a list of

directories to monitor, including the AEE layer callback function to be called when a remote file

access request is made.

QUALCOMM Proprietary
73

Configuring Devices

The second requirement is met by calling the AEE layer callback when a file access is

requested. This means calling the function pointed to by the argument pfn of

OEMFS_RegRmtAccessChk() when an access request is made to a file contained in one of

the directories listed in the OEMFS_RegRmtAccessChk()ís pszDirList argument. The AEE

layer callback returns either TRUE or FALSE, signaling whether file access is allowed or

denied. A reference implementation for this is already provided in OEMFS.c. No modifications

are necessary.

The third requirement is met by blocking or allowing the file access based on the return value

from the callback function of the second requirement. The DMSS files provide this

implementation.

Porting instructions

Step 1. Verify whether or not you have the DMSS patch to support this feature

This feature requires a patch to the DMSS. The access restriction and memory operations

features are not included in all DMSS builds. Verify if your build contains them; if not, integrate

them using the following information.

The access restriction feature is based on the feature definition:

FEATURE_DIAG_FS_ACCESS_VALIDATION. The memory operations feature is based on

the feature definition: FEATURE_DIAG_DISALLOW_MEM_OPS.

To determine if a build contains both of these mandatory features, search custsurf.h, custefs.h,

and custdiag.h. Both of these feature definitions must be defined. A successful search for the

DMSS definitions described above indicates that the build contains these features. If you find

that the build does not include these features, obtain the DMSS patch by contacting brew-oem-

support.

Step 2. Enable the feature in the device build.

After obtaining the DMSS patch, define the following macros while doing the device build:

• FEATURE_DIAG_DIS

• ALLOW_MEM_OPS

Do not make any modifications to the file OEMFS.c (particularly, the sections covered by the

above feature definitions).

QUALCOMM Proprietary
74

Configuring Devices

If you are using the 5100 series MSM, see Special instructions for 5100 series MSM on

page 74.

Step 3. Testing the feature

After completing the device build, perform the following tests to ensure that it has been

incorporated correctly.

NOTE: These tests will be included in the PEK in a later release.

To test the device build

1. Using a tool such as EFS Explorer or AppLoader, ensure that the following types

of files cannot be copied from the device:

• prefs.dat from the brew directory

• Any numbered MIF (for example, 450.mif) inside the brew directory

• Any file from a directory inside the brew directory that is all numbered (for
example, 450)

• Any file from the download directory within the brew directory

2. Ensure that the following file types can be copied from the device:

• Any file from the shared directory

• A named MIF (for example, hello.mif) inside the brew directory

• Any file from a directory that is named (for example, hello) inside the brew
directory

Special instructions for 5100 series MSM

OEMs must make the following three DMSS changes even if the version of DMSS they are

using includes the remote file access restrictions.

First change

From inside the function diag_fs_read(), remove the line:

DIAG_FS_VALIDATE_ACCESS(READ, req_ptr->filename_info.name);

from its current location, and move it to the location shown below (at approximately at Line 655

of the same function):

QUALCOMM Proprietary
75

Configuring Devices

/*--------------------------------
Check for valid packet length.
--------------------------------*/
expected_pkt_len =
sizeof(req_ptr->seq_num) +
sizeof(req_ptr->filename_info.len) +
req_ptr->filename_info.len;
if (pkt_len != expected_pkt_len)
{
return (ERR_PKT(DIAG_BAD_LEN_F));
}
MOVE LINE TO HERE
}
else if (next_seq_num == req_ptr->seq_num)
{
/*--------------------------------
Check for valid packet length.
--------------------------------*/
expected_pkt_len = sizeof(req_ptr->seq_num);

Second change

From inside the function diag_fs_write(), remove the line:

DIAG_FS_VALIDATE_ACCESS (WRITE,
req_ptr>block.begin.var_len_buf.name_info.name);

from its current location, and move it to the location shown below (approximately at Line 894

of the same function):

if (pkt_len != expected_pkt_len)
 {
 next_seq_num = 0;
 return (ERR_PKT(DIAG_BAD_LEN_F));
 }
MOVE LINE TO HERE
} /* Sequence number == 0 */
 else if (next_seq_num == req_ptr->seq_num)
 {
 /*--
 Assign data_ptr to request data block
 --*/
 data_ptr = &req_ptr->block.subseq;

Third change

From inside the function diag_fs_iter(), remove the line:

DIAG_FS_VALIDATE_ACCESS(ITERATE, req_ptr->dir_name.name);

QUALCOMM Proprietary
76

Configuring Devices

from its current location, and move it to the location shown below (at approximately Line 1274

of the same function):

if (fs_rsp.enum_init.status != FS_OKAY_S)
 {
 rsp_ptr = (diag_rsp_type *) diagbuf_pkt_alloc(rsp_len);
 break;
 }
MOVE CODE TO HERE
} /* if first time */
 /*---
 Request the directory name corresponding to the given sequence number
 ---*/
 fs_enum_next(&fs_enum_data,
 &fs_enum,
 NULL,
 &fs_rsp);

QUALCOMM Proprietary
77

Managing and Downloading
Applications and Extensions

This section provides an overview of BREW file types and discusses all aspects of BREW

application management and download from an OEM’s perspective.

BREW file types and dynamic application installations

The following basic file types are specific to BREW:

• MIF: Contains information about each module. Each module can contain one or

more BREW applications, and this type of file contains the following information:

– Applet ClassIDs, names, images, and settings

– General module information in text

– Privilege levels

– Exported ClassIDs and MIME types

– Module dependencies

NOTE: The MIF filename needs to match the application directory name.

• Dynamically loaded module (MOD file): The dynamically loaded module that is

executed at runtime. The applet source files are compiled and linked into this MOD

file type.

• BAR file: Contains all the application resources; that is, text strings, images and

dialogs. This file type is used by the MOD files during execution.

• Signature (SIG) file: Contains digital signature information to ensure the integrity of

each applet. When a module is downloaded, this signature is verified by validating

the binary and resource files. This mechanism is also exercised in the beginning of

each execution. The SIG filename must match the MOD filename. For example, if

the MOD file is called myapp.mod, the SIG filename must be myapp.sig. There are

three types of SIG files:

QUALCOMM Proprietary
78

Managing and Downloading Applications and Extensions

– Test: Used only during development of applets or devices. This file is generated

based on each device’s 32-bit ESN.

– Each device needs a different SIG file, but all the applets within the same device

can share the same signature. You can get this signature file directly from

QUALCOMM.

– Carrier pass-through: Generated if an operator certifies an application. This file is

generated based on the contents of the module.

– TRUE BREW®: Generated if the application goes throughTRUE BREW testing.

This file is generated based on the contents of the module.

Filenames in the canonical BREW file name space are:

fs:/

The remaining filename space scheme has the following key features:

• Backward compatibility

• New filenames distinct from the current name space

• An unambiguous, complete name space

The application relative name space is now:

fs:/~/

BREW maps fs:/~/ to fs:/mod/<current app directory>”. The fs/~/ structure is designed as a

convenience for application developers by allowing them to address a file in their own directory

without requiring them to know their own module ID or construct a special path that includes

it. This name space also allows applications to publish files for sharing with other applications

without being concerned about name space conflicts.

Some concrete example paths and their meanings are as follows:

fs:/~/ The current application’s module directory. If no application is active,
this means fs:/sys/.

fs:/ The root directory from a BREW perspective. Any application can
initialize an enumerator on this directory, but the enumeration results
depend on the current application’s permissions.

QUALCOMM Proprietary
79

Managing and Downloading Applications and Extensions

NOTE: Anything that doesn’t begin with fs:/ is treated as a case-insensitive pathname and is

converted to lowercase. The converted string is appended to the new filename space under

fs:/~/.

The AEEFile.h contains constant strings (shown below) to conveniently access the new

filename space. These strings reflect the manner in which BREW expects to use the file

system.

You are responsible for mapping BREW name space names in the OEMFSPath.c and

OEMFS.c to their proper locations on your native file system.

When mapping the BREW name space names to the native file system, please consider the

following requirements:

fs:/~0x0100F00D/ The module directory of the module that exports the class
0x0100F00D.

NOTE: In case 0x0100F00D is exported by module 333, this path is
rewritten by BREW to fs:/mod/333/.

fs:/mod/ The modules directory, currently considered the application directory
in the SDK.

fs:/mif/ The MIF directory.

fs:/shared/ What BREW expects the OEM file system to map to the shared
directory.

fs:/ringers/ What BREW expects the OEM file system to map to the ringers
directory.

fs:/address/ What BREW expects the OEM file system to map to the address book
directory.

fs:/card0/ What BREW expects to be the first removable memory card.

#define AEEFS_ROOT_DIR fs:/

#define AEEFS_HOME_DIR fs:/~/

#define AEEFS_SYS_DIR fs:/sys/

#define AEEFS_MOD_DIR fs:/mod/

#define AEEFS_MIF_DIR fs:/mif/

#define AEEFS_SHARED_DIR fs:/shared/

#define AEEFS_ADDRESS_DIR fs:/address/

#define AEEFS_RINGERS_DIR fs:/ringers/

#define AEEFS_CARD0_DIR fs:/card0/

QUALCOMM Proprietary
80

Managing and Downloading Applications and Extensions

• AEEFS_SYS_DIR must not map to any type of removable media and must not be

the same as or any subdirectory of AEEFS_MOD_DIR, AEEFS_SHARED_DIR,

AEEFS_ADDRESS_DIR or AEEFS_RINGERS_DIR.

• AEEFS_MOD_DIR must not map to any type of removable media and must not be

the same as or any subdirectory of AEEFS_SHARED_DIR,

AEEFS_ADDRESS_DIR or AEEFS_RINGERS_DIR. It is also recommended that

AEEFS_MOD_DIR does not map to the same area as AEEFS_MIF_DIR.

• AEEFS_MIF_DIR must not map to any type of removable media and must not be the

same as or any subdirectory of AEEFS_SHARED_DIR, AEEFS_ADDRESS_DIR or

AEEFS_RINGERS_DIR. It is also recommended that AEEFS_MIF_DIR does not

map to the same area as AEEFS_MOD_DIR.

• AEEFS_SHARED_DIR must not map to any type of removable media and must not

be the same as or any subdirectory of AEEFS_ADDRESS_DIR or

AEEFS_RINGERS_DIR.

• AEEFS_ADDRESS_DIR must not be the same as or any subdirectory of

AEEFS_SHARED_DIR or AEEFS_RINGERS_DIR.

• AEEFS_RINGERS_DIR must not map to any type of removable media and must not

be the same as or any subdirectory of AEEFS_ADDRESS_DIR or

AEEFS_SHARED_DIR.

BREW provides mapping from old names to new names and from fs:/~/ names to their

canonical form.

Installing BREW files

You can install BREW-specific files by using the QCT EFS Explorer.

fs:/ maps to brew:/ This means that fs:/mod/ and fs:/mif/ are mapped to brew/mod/ and
brew/mif/, respectively.

NOTE: If you have any dynamic applications on your phone, you’ll
have to move them.

fs:/card0/ maps to mmc1/ on
platforms that define
FEATURE_MMC

This is an exception to the previous rule regarding fs:/ mapping to
brew/.

QUALCOMM Proprietary
81

Managing and Downloading Applications and Extensions

To install the BREW files

1. Open the EFS Explorer and make sure the device is in Diagnostic Monitor (DM)

mode.

The Phone Selection dialog box opens.

2. Select the device.

The selected device is highlighted.

3. In the service programming code (SPC) field, enter the correct SPC and click OK.

4. Go to the BREW root directory. If it doesn’t exist, create one by clicking File > New
> Directory.

The Create Directory dialog box opens.

5. Copy the MIFs to the root directory by clicking File > New > File or by dragging the

MIF over the EFS Explorer window.

The MIFs are moved to the BREW directory.

QUALCOMM Proprietary
82

Managing and Downloading Applications and Extensions

6. Create the module subdirectory.

The Create Directory dialog box opens.

7. Copy the BAR, MOD, and SIG files to the module subdirectory.

The BAR, MOD, and SIG files are moved to the module’s subdirectory.

QUALCOMM Proprietary
83

Managing and Downloading Applications and Extensions

8. Reset the device by clicking Phone > Reset phone from the Phone menu.

The BREW-specific files are installed.

Creating static extension DLLs

This section describes how to create static extension DLLs.

To create a static extension DLL

1. Create a Win32 DLL.

2. Export a function "const AEEStaticClass* GetStaticClassEntries(void)" from that

DLL, which returns an array of AEEStaticClass.

3. Define AEE_STATIC preprocessor define.

4. Build the DLL and be sure it exists in the \Modules directory within the \bin directory

where the BREW_Simulator.exe resides.

5. For building the DLL, include paths for AEE header files in your project settings and

in your path to BREW_Simulator.lib, which is available in the same directory as

BREW_Simulator.exe.

Sample code for the exported function

The following is sample code for the exported function:

QUALCOMM Proprietary
84

Managing and Downloading Applications and Extensions

const AEEStaticClass gDemoExtensionClasses[] = {
{ AEECLSID_DEMOEXTENSION, 0, 0, 0, DemoExtension_New},
NULL // Always the last one
};

...

const AEEStaticClass* GetStaticClassEntries(void)
{
return gDemoExtensionClasses;
}

...

int DemoExtension_New(IShell *ps, AEECLSID cls, void **ppif)
{
// Add code to implement this function...
}

NOTE:

• The BREW_Simulator.lib exports all the functions included in AEE_OEM.h. If you

refer to any function from AEE_OEM.h, you must link this library in your DLL.

• If you define an entry in AEEStaticClass array within OEMModTableExt.c and create

a DLL for the same ClassID, then the dynamic (DLL) one takes precedence.

Asynchronous BREW Interfaces

This section describes how to write a BREW extension that interacts with the underlying OEM

layer in an asynchronous manner.

System-level service extensions

The BREW layer supports the concept of application-specific data management and

callbacks. With BREW applications, it is expected that all callbacks received are in the context

of the BREW thread in their application context and on a non-reentrant basis. Although these

characteristics serve to ease the burden on application developers who use BREW, it places

an extra burden on interfaces that provide access to system-level services. For example, a

high-level BREW interface that provides access to a low-level system data acquisition engine

is responsible for several issues independent of calls to the underlying system’s I/O

mechanisms. The following are system-level service extension issues:

QUALCOMM Proprietary
85

Managing and Downloading Applications and Extensions

• Storage of the current application context. This context (ACONTEXT) is an opaque

data object.

• Calls into the underlying system-level API passing interface-specific context data, as

appropriate.

• Processing of inter-task/thread callbacks from the system APIs and scheduling of a

return to the main BREW thread.

• Dispatching the appropriate interface-specific callback to the calling BREW

application with the appropriate application context (ACONTEXT).

BREW provides some system-level APIs that facilitate these mechanisms. When combined

with some general guidelines for use, they allow system services to be supported easily with

minimal extra overhead. For information on BREW OEM APIs, see the BREW™ OEM API

Reference Online Help for MSM Platforms.

Application contexts

BREW maintains the concept of an internal application context. This context applies to the

application currently executing. Although you may perceive the active application as the visible

application, it is actually independent of this concept because applications may execute from

notifications, callbacks, timers, and so forth. To system-level services, the application context

is simply an opaque handle. This opaque handle can be passed to some BREW APIs to help

facilitate the development of complex APIs that require inter-task communication. You can

access to the current application context by using the following function:

void * AEE_GetAppContext(void);

Call this function to retrieve the application context, so it can be associated with the instance

of an interface that has been allocated on behalf of an application. While this is not necessary

if the interface is implemented entirely on top of BREW, it may be necessary when system-

level services that run under BREW are used for the basis of providing functionality to a BREW

application.

Callbacks

BREW provides a thread-safe, zero-allocation mechanism to schedule callbacks from one

thread back in to the BREW task. This mechanism is supported by two interfaces,

ISHELL_Resume and ISHELL_ResumeEx.

QUALCOMM Proprietary
86

Managing and Downloading Applications and Extensions

ISHELL_Resume(IShell * pShell, AEECallback * pcb);
AEE_ResumeCallback(AEECallback * pcb, uint16 wFlags, void * pAppContext);

ISHELL_Resume is provided for use by BREW applications. It may also be provided by those

services that do not require underlying system task support and do not outlive the owner

BREW application.

AEE_ResumeCallback is provided for system service use and allows more control over the

scheduling of AEECallbacks. Of particular note in this section is the ability to pass the context

of an application to the function. This guarantees that the callback is called in the active

context of the application context specified. With regard to the AEECallback and resume

mechanism, the following items are critical:

• By design, the AEECallback and associated macros function without allocating

memory. The specified AEECallback structure is not copied but linked directly into

the list of scheduled callbacks. This ensures that the callback will call with no chance

for error.

• It is the responsibility of system-level services to specify the proper application

context when scheduling callbacks on behalf of an application. Failure to do so

causes instability.

The AEE_GetAppContext and AEE_ResumeCallback mechanisms can be combined to

speed development of system-level interfaces. The following is an example of what these

mechanisms provide:

• An application-level interface to retrieve information about external devices

connected to the device; that is, external.

• Notification of 1-N applications that have created instances of the interface when any

new device is connected.

• An underlying system driver that provides system-level notification regarding

attachment of new devices. The service is provided through some simple system-

level APIs and provides notification by way of a callback from another thread.

To develop the system-level interface for the above example, you must:

1. Create an application-level API.

2. Implement the system service.

3. Link the system service to the schedule callbacks to the application.

QUALCOMM Proprietary
87

Managing and Downloading Applications and Extensions

Application interface

The first step in creating the service is defining a simple application-level API. The following is

a simple example:

IDEVICE_Notify(IDevice * po, AEECallback * pcb);

IDEVICE_GetInfo(IDevice * po, DeviceInfo * pd);

Where the calling BREW application passes an AEECallback initialized to the callback

function, the desired behavior is that this callback is called when a new device is detected. The

BREW application then calls IDEVICE_Getinfo() to retrieve information about the new device.

It then recalls IDEVICE_Notify to receive notification about the next device. It is important that

the notification callback to the application call is in the context of the application. It cannot be

called from another thread and must not be called outside the context of the application.

System service

The system service for this functionality may provide the following APIs:

typedef void (*PFNNEWDEVICE)(void * pUser, DeviceInfo * pdi);

void sys_callback_on_new_device(PFNNEWDEVICE pfn, void * pUser);

When a new device is detected, the underlying system driver calls the notification callback

(PFNNEWDEVICE), passing the specified user context pointer (pUser) and the information on

the new device.

Sample implementation

The sample interface places some unique requirements on the application developer.

Specifically, although there may be many instances of the interface created for 1-N

applications, only a single instance of the system-level service is necessary. This means that

the multiplexing of notifications to the applications must be handled by the developer of the

service.

The AEE_GetAppContext and AEE_ResumeCallback functions make these requirements

easy to address.

To develop the sample system level interface

1. Create the application interface:

QUALCOMM Proprietary
88

Managing and Downloading Applications and Extensions

a. Allocate and initialize the IDEVICE interface class.

b. Link the pointer to the class into a linked list of classes. This is necessary so that

1-N callbacks can be scheduled when the system service finds a new device.

c. Store the creating application context in the class by way of

AEE_GetAppContext.

Device * gpList = NULL;

int Device_New(IShell * pShell, AEECLSID cls, void ** ppObj)
{
Device * pme;

if(!ppObj)
return(EBADPARM);

// Create the object and init the vtable...

pme = (Device *)MALLOC(sizeof(Device));
if(!pme)
return(ENOMEMORY);
GET_PVTBL(pme, IDevice) = &gDeviceMethods;

// Link it to the list we manage...

pme->m_pNext = gpList;
gpList = pme;

// Store the calling app context...

pme->m_pApp = AEE_GetAppContext();

pme->m_nRefs = 1;
*ppObj = pme;
return(0);
}

This function creates the application-level class. It basically allocates memory,

initializes data structures, stores the calling applications context, and inserts the

class into a list of objects that are iterated when new devices are detected.

2. Call the system-service.

int Device_Notify(IDevice * po, AEECallback * pcb)
{
Device * pme = (Device *)po;

CALLBACK_Cancel(pme->m_pcbApp); // Cancel any that are pending
pme->m_pAppCallback = pcb;

sys_callback_on_new_device(FoundNewDevice, &gpList);
}

QUALCOMM Proprietary
89

Managing and Downloading Applications and Extensions

This function stores the AEECallback specified for the interface for use when the

system-level notification is called. It then calls the system-level driver API, telling it

to call the FoundNewDevice function when a new device is connected.

3. Handle the system-level callback.

static void FoundNewDevice(Device ** ppList, DeviceInfo * pdi)
{
// Copy the data and schedule each of the pending apps

Device * pd;

LOCK_INTERRUPTS();

for(pd = *ppList; pd != NULL; pd = pd->m_pNext){
if(pd->m_pAppCallback){
MEMCPY(&pd->device, pdi, sizeof(DeviceInfo));
AEE_ResumeCallback(pd->m_pAppCallback, 0, pd->m_pApp);
}

UNLOCK_INTERRUPTS();
}

This pseudocode is called from the system thread. It iterates the list of instances that have

registered to receive notification of a new device and schedules the callback for them in the

proper application context.

NOTE: This sample code makes the likely invalid assumption that no new devices are

registered, and no new devices overwrite the instance of the last found device by the

application. However, the point of the sample is not the management of the DeviceInfo

structures but of the callbacks.

Although the sample code provided is simplified, it provides an overview of the basic use of

the OEM BREW APIs that can be leveraged to develop system-level services that must

manage inter-thread notifications. In doing so, it leverages a couple of the BREW mechanisms

that reduce the complexity of managing inter-task and inter-application notifications. Use of

mechanisms of this sort are an absolute requirement in the development of such services for

use in BREW.

QUALCOMM Proprietary
90

Managing and Downloading Applications and Extensions

Application downloads

BREW signature verification

BREW signature verification occurs for dynamic applications when BREW initializes. If the

signature verification fails, the applications are removed from the file system.

You can generate test signatures on the BREW web site

(https://brewx.qualcomm.com/oem/home.jsp) or by sending a request for a test signature to

QUALCOMM. Test signatures are tied to the ESN of the device. These signature (SIG) files

can be used across many applications by simply changing the name of the signature. See

detailed information in the BREW SDK™ User Docs.

Enabling the BREW Application Manager for OTA
download

The Brew Application Manager consists of applications responsible for launch, purchase,

presentation and management of applications. For example, Brew AppMgr 2.x consists of

AppMgr and MobileShop. OEMs need to enable BrewAppMgr to make the user launch and

manage existing applications and purchase and install new applications on the device.

For enabling the BrewAppMgr, OEMs must link the appropriate BrewAppMgr library into the

device build, copy the appropriate color depth brewappmgr.mif in the ../brew/mifs folder and

copy the appropriate color depth brewappmgr.bar in the .../brew/mods/brewappmgr folder.

NOTE: PK 3.0.1 contains BrewAppMgr libraries built for various chipsets. BrewAppMgr

libraries provided with the PK are for integration and testing purposes only and are not

intended to be used on a commercial device.

BrewAppMgr source code and various carrier-specific customizations of BrewAppMgr are

available on the OEM Extranet (https://brewx.qualcomm.com/oem/oemtool.jsp). For a

commercial device, OEMs must check with carriers about the choice of BrewAppMgr. Often

carriers mandate the use of BrewAppMgr customized according to their business plan,

download the carrier's choice of BrewAppMgr and customizations from the OEM Extranet, and

integrate these into device builds.

Successful enabling of the BrewAppMgr should result in OEMs being able to see the main

menu of the AppMgr and access MobileShop from there.

QUALCOMM Proprietary
91

Managing and Downloading Applications and Extensions

MobileShop is application used for downloading applications from the Application Download

Server (ADS).

BREW uses OEM_GetConfig() with CFGI_DOWNLOAD to access AEEDownloadInfo struct

providing ADS configuration information such as server, carrier ID, platform ID, authorization

policy, download flags, and privacy policy. OEMs can enable OTA download by configuring

AEEDownloadInfo parameters for CFGI_DOWNLOAD in OEM_GetConfig(). See the BREW

OEM API Reference Online Help for details on OEM_GetConfig(), CFGI_DOWNLOAD and

AEEDownloadInfo.

For testing purpose, OEMs can use following configuration of AEEDownloadInfo parameters:

szServer : oemdemo.qualcomm.com
dwCarrierID : 27
dwPlatformID : 600
nAuth : APOLICY_NONE
wFlags : DIF_MIN_FOR_SID
nPolicy : PPOLICY_BREW_OR_CARRIER

Successful enabling of OTA download should result in OEMs being able to download

applications using MobileShop.

Downloading BREW applications

There are two methods of downloading applications to a BREW device.

• Download applications OTA using the BREW download mechanism. This is the

mechanism by which end users download BREW applications to the device.

• Download applications directly to the native file system (EFS) without using the

BREW download mechanism. This method is intended strictly for testing purposes

only and cannot be used by end users.

Downloading applications directly to the native file system (EFS)

BREW supplies a tool called the BREW AppLoader, which transfers applications to the device.

See the BREW AppLoader User Guide for details.

QUALCOMM Proprietary
92

Managing and Downloading Applications and Extensions

Downloading applications with the BREW download mechanism

Connecting to an ADS

BREW uses information that you provide in OEM_GetConfig to connect to the ADS. For

testing purposes, use the following information for CFGI_DOWNLOAD:

• BREW or carrier signature policy

• Authorization policy none

• Platform ID

• Carrier ID

You must implement the function OEM_SetConfig() when CFGI_DOWNLOAD is passed as

the configuration item. When OEM_SetConfig() is called, you must store the download

information (AEEDownloadInfo) in persistent storage (for example, NV) and the same

information must be retrieved and returned when the function OEM_GetConfig() is called with

CFGI_DOWNLOAD. Failing to do so is a fatal error and results in the BREW download

mechanism malfunctioning.

When OEM_GetConfig() is called (with CFGI_DOWNLOAD) prior to calling OEM_SetConfig()

(with CFGI_DOWNLOAD), you must return your preferred information (OEM default

information) for AEEDownloadInfo (for example, PlatformID, ServerAddress, CarrierID, and

so on).

The following is some sample code:

int OEM_SetConfig(AEEConfigItem i, void * pBuff, int nSize)
{
if(i == CFGI_DOWNLOAD) {
//Store the Information (pBuff) in a persistent Storage (ex: NV)
return(SUCCESS);
}
......
......
}

int OEM_GetConfig(AEEConfigItem i, void * pBuff, int nSize)
{
if(i == CFGI_DOWNLOAD) {
//Retrieve the information (pBuff) stored when OEM_SetConfig() was called.
If no information has been stored,
//retrieve the default information and fill into pBuff and return

QUALCOMM Proprietary
93

Managing and Downloading Applications and Extensions

return(SUCCESS);
}
......
......
}

Downloading to R-UIM devices

BREW supports the ability to download and manage applications on R-UIM-based devices.

However, you download and store applications on the main flash memory of the device. BREW

does not support downloading or storing of applications directly on the RUIM card.

You can achieve the following download-related features associated with R-UIM based

devices by setting the appropriate flag to AEEDownloadInfo when OEM_GetConfig() is

invoked by BREW with CFGI_DOWNLOAD:

• By default, BREW allows the execution of all applications, except the subscription

applications, when the card is changed. For example, if you downloaded an

application when card A was on the device, the application runs even when you

change the card to card B, as long as the application is not the subscription license

type.

NOTE: To ensure that no applications run, either subscription or non-subscription,

set the flag DIF_SID_VALIDATE_ALL in AEEDownloadInfo when you change the

card.

• By default, BREW does not delete applications if you change the card. For example,

if you download an application using card A, you cannot delete the application if you

change to card B. To delete applications even when you change the card, you must

set the flag DIF_RUIM_DEL_OVERRIDE in AEEDownloadInfo.

• BREW stores device-specific information in the MIF to prevent the copying of BREW

applications from one device to the other. On RUIM-based devices, do not use the

DIF_SID_ENCODE flag. Not using DIF_SID_ENCODE instructs BREW to use the

ESN to encode the MIFs.

QUALCOMM Proprietary
94

Memory Security Through
BRIDLE

BRIDLE is a mechanism designed to protect BREW and DMSScode and data from BREW

applications. BRIDLE uses the services of the Memory Management Unit (MMU) available on

MSM chipsets with ARM 9 core, or the Memory Protection Unit (MPU) available on certain

MSM chipsets with the ARM7 core. This protection mechanism is being implemented in

phases. The first phase of implementation of this protection service is known as BRIDLE-I, and

it provides mechanisms to protect all non-BREW code and data on the device from BREW

applications.

For more detailed information about BRIDLE, see the BREW OEM Reference Guide for

BRIDLE.

BRIDLE-I architecture

On any mobile device capable of executing third party applications, the code is divided into

system software, application service, such as BREW, and user applications. In an unpro-

tected system, the user applications have complete access to the system software, making

the device vulnerable to defective or malicious applications. BRIDLE-I protects the system

from such applications by restricting access to the system software.

BRIDLE on ARM-based ASICs uses the various modes of operation of the ARM processor

core to provide the protection. The seven modes of operation of the ARM processor core are

User, Supervisor, System, FIQ, IRQ, Abort, and Undefined. Of these, the DMSS primarily

executes in Supervisor, System, FIQ and IRQ modes, and enters Undefined or Abort modes

only under abnormal conditions. The DMSS never uses the User mode. As User mode is the

most restricted mode of operation, it is the logical choice to run BREW applications. User

mode is entered from Supervisor mode by modifying the mode bits of the Current Program

Status Register (CPSR). However, the switch from User mode to Supervisor mode can only

be done with an interrupt. The only interrupt callable from software is the ARM Software

Interrupt (SWI), and BRIDLE uses this as a means for BREW to execute all software that

needs to run in Supervisor mode. In BRIDLE-I, the BREW kernel and the underlying operating

system execute in Supervisor mode, while BREW applications and facilities, for example, the

dispatcher) execute in User mode.

QUALCOMM Proprietary
95

Memory Security Through BRIDLE

Supervisor to User

Switching from Supervisor to User mode is safe and relatively simple. On most hardware, it

involves setting some bits in a register. In BRIDLE-I, this action is performed during the

dispatching of callbacks, so all events are processed in User mode. The next figure illustrates

the transition from Supervisor to User mode, and the reverse during function return.

Supervisor to User mode context switch

User to Supervisor mode

Transitioning from User mode to Supervisor mode is more involved. The actual mechanism for

this transition involves a SWI in which the handler is installed and executed in Supervisor

mode. This may be referred to as a system call and is illustrated in the following figure.

QUALCOMM Proprietary
96

Memory Security Through BRIDLE

User to Supervisor mode context switch

Memory regions

In systems where memory protection is available, a memory access request is resolved, in the

case of an MMU-based system, or validated, in the case of an MPU-based system. On ARM-

based systems, an illegal access for data causes a data abort, and an illegal access for

instructions causes a pre-fetch abort. For the MMU or MPU to control access, the address

space is divided up into regions with different access permissions. In BRIDLE-I, there are three

distinct memory regions defined as follows.

Region Description

Supervisor read/write, User no
access

Used for System data (read/write data, zero-initialized data, or bss).

Supervisor read/write, User
read-only

Used for a small subset of system data that needs to be read in User
mode. In particular, the module SWI numbers are required as
arguments to the BRIDLE SWI in User mode but are owned by
Supervisor mode.

Supervisor read/write, User
read/write

Used for User data (read/write data, zero-initialized data).

QUALCOMM Proprietary
97

Memory Security Through BRIDLE

In BRIDLE-I, the memory regions are established at link time. The rules are supplied to the

linker through the ARM scatter load file and establish the coherence between the code and

data layout and the memory access control configuration used by the MMU/MPU. The linker

uses the object code and the linkage rules and generates an image that can be loaded and

executed on the device.

MMU/MPU configuration

Based on the address space available on the device and the code and data sizes for the

various regions, you have to create a configuration for the MMU or MPU before enabling

memory protection. This process may take a couple of iterations to optimize code layout,

minimize the waste of address space, and, simultaneously, ensure that no code or data is at

an address that would compromise BRIDLE security. Also, code or data that should accessible

when the processor is in User mode generates data or pre-fetch aborts if such code or data is

placed in address regions not accessible in User mode.

A sample MPU configuration is provided in BREWMPU.c, and a sample MMU configuration is

provided in ARMMMU.c in the BREW PK. These have to be modified for each OEM’s specific

architecture. A related function to the MMU/MPU configuration is bridle_checkAccess. This

function provides the mechanism for BRIDLE entry points and other BRIDLE support functions

to validate accesses from User mode. This function is crucial for BRIDLE to provide protection

and is one of the porting aspects validated by OATBridle. A reference implementation for this

function is provided in the above-mentioned files, but it may also have to modified and

optimized for each device.

Once the MMU/MPU is configured, the global boolean flag bridle_on needs to be set to TRUE

for BRIDLE to be enabled on the device. This allows the OEM to enable BRIDLE at runtime

with no change in the BREW libraries.

Scatter load

The ARM scatter load file is a collection of rules that describe which portions of object code

result in which regions of the address space. Since BRIDLE-I requires coherence between the

code layout and the MMU/MPU configuration, the scatter load plays a very important role.

The following figure shows the relationship between the MMU and the scatter load.

QUALCOMM Proprietary
98

Memory Security Through BRIDLE

MMU and scatter load relationship

To support BRIDLE, you need to follow a small set of rules while creating your scatter load file;

typically, this file has a .scl extension.

QUALCOMM Proprietary
99

Memory Security Through BRIDLE

The total code and data memory must be divided into three types of regions as described in

the previous section. There may be more than one region of the same type. The regions must

be aligned to the nearest page or section boundary (MMU) or the nearest MPU region

boundary. This process may waste some of RAM or flash. However, you can minimize the

waste by optimizing the page or region type, and by reordering the code layout in the scatter.

The code and data sections from AEE libraries must be placed in appropriate regions. BREW

has the following format for defining regions for its sections:

bridle_svc_type_usr_access, where type describes the type of data that is present

in that region and access describes the access permissions for that region when

the processor is in User mode.

Possible values for type are shown in the following table.

Possible values for access are shown in the following table.

In addition to placing these BREW library sections in the appropriate regions in the scatter

load, there are some more special BREW regions that must be placed as specified below:

bridle_critical_section_zi: This data pertains to the various critical sections that may

be used by BREW or OEM code to provide thread-safe access. Sections marked

bridle_critical_section_zi must be in a Supervisor read/write, User no-access region.

protected_svc_heapbytes: This is the BREW kernel heap. All calls to malloc when in

SVC mode allocate memory from this heap. This section must be in a Supervisor

read/write, user no-access region.

unprotected_brew_heapbytes: This is the BREW heap. BREW applications as well as

User mode services of BREW allocate memory from this heap. This section must be

in a Supervisor read/write, user read/write region.

ro Read-only

rw Read/write

zi Zerio-initialzed

rw Read/write

ro Read-only

na No access

QUALCOMM Proprietary
100

Memory Security Through BRIDLE

bridle_user_stack: This is the stack used by BREW in User mode. BREW applications

as well as User mode services of BREW execute on this stack. This section must be

in a Supervisor read/write, user read/write region.

The following example illustrates a typical scatter layout for a device with an MMU or MPU, 4

megabytes of code space and 2 megabytes of RAM. The code space begins from offset 0, and

the RAM starts at address 0x14000000. In this configuration, all code is read-only in User

mode. The RAM is divided as follows: The first 16 kilobytes are read-only in User mode, and

the remaining portion of the first 512 kilobytes is read-write in User mode. The upper 1.5

megabytes of RAM are not accessible in User mode. The file BREWMPU.c in the BREW PK

illustrates how to configure the MPU (for ARM-7 based MSMs such as the 6050 and the 6200)

for the above configuration:

CODE_ROM 0x0 0x3fffff
{
 SCATTER_U_RO_VBB_ROM 0x0
 {
 bootsys.o (BOOTSYS_IVT, +FIRST)
 bootsys.o (BOOTSYS_BOOT_CODE)
 bootsys.o (BOOTSYS_DATA)
 bootsys.o (BOOT_RAM_TEST)
 boothw_6050.o (+RO)
 bootmem.o (+RO)
 dloadarm.o (+RO)
 dloaduart.o (+RO)
 dloadusb.o (+RO)
 boot_trap.o (+RO)
 crc.o (+RO)
 }

 SCATTER_U_RO_MAIN_APP +0x0
 {
 * (+RO)
 * (bridle_svc_ro_usr_ro)
 }

 SCATTER_U_RO_BREW_USER_RO_RAM 0x14000000
 {
 * (bridle_svc_rw_usr_ro)
 * (bridle_svc_zi_usr_ro)
 bootapp.o (BOOTAPP_IVECT, +FIRST)
 bootbrew.o (BREWDATA_ABORT)
 *mif.o (+RO)
 *bar.o (+RO)
 *mod.o (+RO)
 }

 SCATTER_U_RW_BREW_RAM 0x14004000
 {

QUALCOMM Proprietary
101

Memory Security Through BRIDLE

 * (bridle_svc_rw_usr_rw)
 * (bridle_svc_zi_usr_zi)
 * (unprotected_brew_heapbytes)
 bridle_stack.o (bridle_user_stack, +FIRST)
 sys_palette.o (+RW, +ZI)
 OEM*.o (+RW, +ZI)
 AEE.lib (+RW, +ZI)
 *BREW.lib (+RW, +ZI)
 *PNG.lib (+RW, +ZI)
 *z.lib (+RW, +ZI)
 *.l (+RW, +ZI)
 bridle_user.o (+RW, +ZI)
 }

 SCATTER_U_NA_APP_RAM 0x14080000
 {
 * (protected_svc_heapbytes)
 * (bridle_svc_rw_usr_na)
 * (bridle_svc_zi_usr_na)
 * (bridle_critical_section_zi)
 AEEBridle.lib (+RW, +ZI)
 OEMFS.o (+RW, +ZI)
 OEMSock.o (+RW, +ZI)
 OEMMutex.o (+RW, +ZI)
 OEMCriticalSection.o (+RW, +ZI)
 OEMPosDet.o (+RW, +ZI)
 OEMTAPI.o (+RW, +ZI)
 OEMSIO.o (+RW, +ZI)
 * (+RW, +ZI)
 }

 SCATTER_U_NA_BB_RAM +0x0
 {
 dloadarm.o (+ZI)
 dloadusb.o (+RW, +ZI)
 bootmem.o (+ZI)
 }

}

Implementing BRIDLE integration

The following diagram shows the BRIDLE porting process

QUALCOMM Proprietary
102

Memory Security Through BRIDLE

BRIDLE Porting Process

Verifying implementation of BRIDLE integration

Use OAT to verify your implementation of BRIDLE integration. OATBridle tests the MMU/MPU

configuration and general ARM processor specific parameters, such as processor modes,

interrupt manipulation, and illegal SWIs. See the BREW™ Porting Evaluation Kit User Guide

in the PEK documentation set.

QUALCOMM Proprietary
103

BREW UI Guidelines

This section explains the BREW UI and discusses best practices for integrating your native UI

applications in the BREW environment.

Many of the concepts and file types referred to in this section are covered in Managing and

Downloading Applications and Extensions on page 77.

Creating a static application or extension

This section describes how to create a static application or extension that can be exposed to

BREW applications.

The first step in creating a static extension or application is to obtain a ClassID for the new

extension or application.

Obtaining a ClassID

A ClassID is a unique, 32-bit identifier for each BREW application or extension. It is provided

through the BREW ClassID (BID) file (for example, MyExt.bid or MYApp.bid). The BID file also

contains a name for the ClassID that was requested (for example, AEECLSID_MYAPP).

The recommended method for obtaining a ClassID is to request one from the OEM Extranet.

If you are unable to obtain a ClassID from the OEM Extranet, follow the procedure described

below.

To obtain a ClassID

• Assign a value from a set of ClassIDs for OEMs. In the OEMClassIDs.h file, there

are two definitions for OEM ClassIDs (for example, AEECLSID_OEM and

AEECLSID_OEM_APP). These two values define the start of a range of ClassIDs

reserved for OEMs' extensions and applets.

QUALCOMM Proprietary
104

BREW UI Guidelines

– For a static extension, assign a ClassID that is in the range of (AEECLSID_OEM

to AEECLSID_OEM_APP). Some ClassIDs in this range are already taken for the

reference OEM code (for example, display). If you are using any OEM reference

code that uses these OEM ClassIDs, you must offset your OEM ClassIDs to

prevent a conflict from occurring.

– For a static application, assign a class ID that is in the range of

(AEECLSID_OEM_APP to AEECLSID_SAMPLE_APP).

NOTE: Ensure that the new ClassID does not clash with an existing ClassID.

Creating the extension or application

After you have obtained a ClassID, follow the procedure below to create the static application

or extension.

To create a static extension or application

1. To include the extension or application as a feature, introduce a new feature

definition in OEMFeatures.h (for example, #define FEATURE_MYAPP).

2. Create a MIF for your application or extension using the MIF Editor provided as part

of the BREW SDK™ (for example, MyApp.mif).

NOTE: The MIF filename must begin with an alphabetical character, not a number.

3. Create a persistent file entry for the MIF by executing the bin2src utility on the MIF

to produce a source version of the MIF binary. For more information on persistent

files, see Creating persistent files on page 107, and for information on the bin2src

utility, see the BREW PK Utilities Guide . For example, if your MIF file is named

MyApp.mif, then execute the following:

bin2src -sMyApp.mif -dfs:/mif

This creates a file called MyAppmif.c.

4. Include the MyAppmif.c file in your build.

5. Add the global variable declaration of MyAppmif.c to OEMConstFiles.c as follows:

#ifdef FEATURE_MYAPP

extern AEEConstFile gMyApp_MIF;

#endif

6. Add the address of gMYApp_MIF to the gpOEMConstFiles table as follows:

QUALCOMM Proprietary
105

BREW UI Guidelines

static const OEMFSPersistentFile * gpOEMConstFiles[] = {

...

#ifdef FEATURE_MYAPP

&gMyApp_Mif,

#endif

...

NULL};

7. Modify OEMModTableExt.c to associate your MIF to your code. This involves

removing the MyApp_GetModInfo function from your static application (if it is

already present) and exposing the MyApp_Load function that is normally static in

that code. Then add an entry to the OEMStaticModstable.

a. Add a declaration in OEMModTableExt.c for the Load function as follows:

#ifdef FEATURE_MYAPP

extern int MyApp_Load(IShell *ps, void * pHelpers, IModule **

pMod);

#endif

b. Add the Load function to the gOEMStaticModList[] list as follows:

const AEEStaticMod gOEMStaticModList[] =

{

...

#ifdef FEATURE_MYAPP

{"MyApp.mif", MyApp_Load},

#endif

...

{NULL, NULL}

};

8. Ensure that the following functions are defined for your application.

a. In your application source file (for example, MyApp.c), declare the following:

int MyApp_Load(IShell *ps, void * pHelpers, IModule ** pMod);

QUALCOMM Proprietary
106

BREW UI Guidelines

int MyApp_CreateInstance(AEECLSID ClsId,IShell * pIShell,IModule
* po,void ** ppObj);

b. In the same file, define the MyApp_Load and MyApp_CreateInstance functions:

int MyApp_Load(IShell *ps, void * pHelpers, IModule ** pMod)

{

 return(AEEStaticMod_New((int16)(sizeof(AEEMod)),ps,pHelpers,
pMod,,MyApp_CreateInstance,NULL));

}

int MyApp_CreateInstance(AEECLSID ClsId,IShell * pIShell,IModule *

po,void ** ppObj)

{

 *ppObj = NULL;

 if(ClsId == AEECLSID_MYAPP)

 {

 if(AEEApplet_New(sizeof(MyApp), //Size of your private class

 ClsId, //Your Class ID

 pIShell, //Shell Interface

 po, //Module instance

 (IApplet**)ppObj, //Return object

 (AEEHANDLER)MyApp_HandleEvent, //Your App's event handler

 (PFNFREEAPPDATA)MyApp_FreeAppData) //Cleanup function

 == TRUE)

 {

 // Invoke any Init function as needed

 return (AEE_SUCCESS);

 }

}

 return (EFAILED);

}

After you compile and link, your module is available in the build.

NOTE: From this point on, your application is governed by the privileges set in your

application’s MIF.

QUALCOMM Proprietary
107

BREW UI Guidelines

Including multiple applications or extensions

Each BREW module contains one or more BREW classes. These classes are either applet

and non-applet classes (extensions) and are identified by ClassIDs. The applet classes are

run by the device user, whereas the non-applet classes implement services used by the

module's applet classes. These services are available to the classes of other modules as well.

The MIF file contains unique ClassIDs for each of the module's classes and specifies which

classes are exported for use by other modules.

For more information on creating extensions, refer to the Extending BREW APIs section in the

BREW SDK User Docs, provided as part of the BREW SDK.

To include multiple applications or extensions in one module

1. Obtain a ClassID for each application or extension that is part of the module being

created (see To obtain a ClassID on page 103).

2. Using the same method, obtain a ClassID for each of the applets or extensions that

are part of MyNewApp (for example, MyNewClass1.bid, MyNewApp2.bid).

3. The recommended method for including the module as a feature is to introduce a

new feature definition in OEMFeatures.h (for example, #define

FEATURE_MY_NEW_MOD).

4. Create a MIF for your module using the MIF Editor provided as part of the BREW

SDK (for example, MyNewMod.mif).

NOTE: The MIF filename must begin with an alphabetical character, not a number.

As part of creating the MIF, include the ClassID of the applets or extensions that

are part of the module. For more information on creating MIFs, see the MIF Editor

documentation provided as part of the BREW SDK User Docs.

5. Execute the set of steps starting from step 4 of the procedure To create a static

extension or application on page 104.

Creating persistent files

In BREW v3.0, the concept of persistent files is introduced. The term persistent indicates that

the content remains in memory at all times and cannot be deleted unwillingly. A persistent file

typically resides as static data in memory and not as a physical file on the file system tree. This

provides a way to protect the file contents from being deleted or modified maliciously.

QUALCOMM Proprietary
108

BREW UI Guidelines

To create persistent files, a new tool named bin2src is provided (see the BREW PK Utilites
Guide). This tool takes as input a binary file and creates as output a source file which is

compiled into the handset software image. An entry for this file can be added into the

OEMConstFiles.c file. The OEMConstFiles.c file contains the data structures populated by the

OEM with the list of persistent files. These files consist of data structures that are accessed by

OEMFS.c as virtual files. This allows the OEM to reduce RAM overhead by placing persistent

files (AEEControls.bar, and the like) into virtual const data that consumes code space but not

RAM.

Registering a handler

Use ISHELL_RegisterHandler() to associate a MIME type with the ClassID of the BREW

handler class you implemented to handle this type. To update a handler, delete the existing

handler from the database by calling ISHELL_RegisterHandler() with a 0 (zero) ClassID. See

the BREW API Reference Online Help for more details on this API.

The following shows how ISHELL_RegisterHandler() deregisters and registers a MIDI MIME

type:

// De-register any existing handler for this MIDI MIME type
// MT_AUDIO_MIDI = “audio/mid”
ISHELL_RegisterHandler(pIShell, AEECLSID_MEDIA, MT_AUDIO_MIDI, 0);

// Register this class as the handler for the MIDI MIME type
ISHELL_RegisterHandler(pIShell, AEECLSID_MEDIA, MT_AUDIO_MIDI,
AEECLSID_MEDIAMIDI);

ISHELL_GetHandler() returns the ClassID of the handler class associated with a given MIME

type. See the BREW API Reference Online Help for more details on this API.

The following shows how ISHELL_GetHandler() gets the classID for the MIDI MIME type that

was registered earlier.

// The return value in this case would be AEECLSID_MEDIAMIDI
clsID = ISHELL_GetHandler(ps, AEECLSID_MEDIA, MT_AUDIO_MIDI)

QUALCOMM Proprietary
109

BREW UI Guidelines

Using and extending INotifier

Notification is a mechanism that notifies classes when certain events occur in other classes.

The listener registers for notifications by using ISHELL_RegisterNotify(), so it receives an

EVT_NOTIFY event when the event occurs.

Notifiers are classes that generate and dispatch notifications when certain events occur.

Whenever a notifier sends notifications, it uses ISHELL_Notify(). The INotifier interface

provides the functions to any class that sends notifications to other applets. See the BREW

API Reference Online Help for more details on this interface. Functions in the INotifier

interface include:

• INOTIFIER_AddRef()

• INOTIFIER_Release()

• INOTIFIER_SetMask()

You define the set of notifications, or masks, that the notifier class can issue. These masks

must be available to other applets so the applets interested in these notifications can register

for them. You can build the notifier class as either a static or dynamic module.

Notification scenario

Consider a user, applet A, that must be notified by the shell when an event occurs on

notification service B.

Applet A registers with the shell by invoking the ISHELL_RegisterNotify() function with the

event corresponding to NMASK_XXXX on notification service B. (The applet registers for this

event in the MIF also.) The shell sends a request to the notification service B to inform the shell

when an event corresponding to NOTIFY_MASK_XXXX occurs on service B. Service B then

adds this event to its list of notify events.

When an event on the service B occurs, it reviews the notify event list and informs the shell

that EVT_XXXX corresponding to NMASK_XXXX occurred by invoking the ISHELL_Notify()

function. The shell reviews its registered entry list and sends an EVT_NOTIFY event to the

appropriate registered applets. The dwParam of this event is of type AEENotify. The pData

member in the AEENotify Structure contains notifier-specific data. See the call flow diagram

below.

QUALCOMM Proprietary
110

BREW UI Guidelines

Call flow

Implementing an INotifier class

When you create a BREW class that will notify registered classes of certain events, you must

call the macro INHERIT_INotifier. Example code follows, in which the new class is named

IMyClass:

typedef struct _IMyClass IMyClass;

QINTERFACE(IMyClass)

{

 INHERIT_INOTIFIER(IMyClass);

 void (*MyFunc1)(IMyClass * po);

 int (*MyFunc2)(IMyClass * po, MyParm myParm);
}

Three methods are inherited from INotifier. Two of these methods are from IBase, as shown

in the following diagram.

QUALCOMM Proprietary
111

BREW UI Guidelines

Methods for Implementing an INotifier class

You must implement all three functions from the derived INotifier, in addition to the methods

defined inside the new class (MyFunc1 and MyFunc2). For a detailed description of each

function, see the BREW API Reference Online Help.

Refer to OEMTAPI.c for an example of this notification mechanism. OEMTAPI.c notifies

registered applications of TAPI status changes.

Extending IControl and creating an image viewer

IControl is the base class object from which all UI controls are derived. The interface provides

common methods exposed by all UI controls. Because the interface is abstract, it is not

possible to create an instance of the IControl interface directly. Create your own controls by

inheriting from the IControl class and then adding control specific functions.

The following example shows how to extend the IControl interface to create an image viewer

control interface (IImageCtl). This allows the caller to display a scrollable view in an image.

typedef struct _IImageCtl IImageCtl;

QINTERFACE(IImageCtl)

QUALCOMM Proprietary
112

BREW UI Guidelines

{
 INHERIT_IControl(IImageCtl)

void (*SetImage)(IImageCtl * po, IImage * pi);
void (*SetRedraw)(IImageCtl * po, PFNNOTIFY pfn, void * pUser);

}

This means that the IImageCtl interface inherits all the controls from the base class IControl,

implements all of the functions in the IControl Interface, and exposes the following functions:

• IIMAGECTL_SetImage: Sets image into the image control.

• IIMAGECTL_SetRedraw: Sets the redraw call back for the image set in image

control.

For more details on IControl interface functions, see the BREW API Reference Online Help.

You can create BREW custom controls to match your native controls, so both BREW and the

native environments share the look and feel of a common set of controls.

Implementing the custom controls

Refer to AEEImageCtl.c that provides the implementation for the IImageCtl interface by

inheriting from the IControl class.

Extending text control

BREW provides a standard way for applets to input language characters, numbers, and

symbols. Because there is a diverse mix of devices that use many different languages,

character sets, and mechanisms for inputting them, you must provide the underlying layer that

takes care of character input and behavior for your specific devices. The ITextCtl interface is

found in OEMitextctl.c.

Implementing the text control interface

To implement the text control interface (ITextCtl), see source code files OEMitextctl.c,

OEMText.c, and OEMText.h.

QUALCOMM Proprietary
113

BREW UI Guidelines

Reference implementation

See the text control interface reference implementation in OEMitextctl.c, OEMText.c, and

OEMText.h.

Customizing reference implementation

For devices using English only without a third party text translation library, the text control

mechanism doesn’t need to be updated because the reference implementation delivered to

you already performs all the functions required by BREW. For a non-English device or

integrating a third party text translation library, you must modify the reference implementation

to accommodate its own language character sets and the required behavior based on key

inputs. The reference implementation provides the following three text input modes.

To add a new mode (for example CUSTOM) for a new set of characters

1. Declare the mode in OEMText.c as follows:

#define TEXT_MODE_SYMBOLS AEE_TEXT_MODE_SYMBOLS

#define TEXT_MODE_NUMBERS (AEE_TEXT_MODE_USER+0)

#define TEXT_MODE_MULTITAP (AEE_TEXT_MODE_USER+1)

#define TEXT_MODE_CUSTOM (AEE_TEXT_MODE_USER+2)

NOTE: (AEE_TEXT_MODE_USER+2) must be a unique number.

2. Change the structure from the following:

static const ModeInfo sTextModes[] =
{

{TextCtl_MultitapRestart,

 TextCtl_MultitapKey,

 TextCtl_MultitapString,

 TextCtl_MultitapExit,

 {TEXT_MODE_MULTITAP, {'M','u','l','t','i','t','a','p',0}}},

Text input mode Description Contained in

Symbols Input symbols cannot be
displayed by other keystrokes.

OEMitextctl.c

Numbers Input numeric characters from 0
to 9.

OEMText.c

Multitap Input English alpha characters. OEMText.ct

QUALCOMM Proprietary
114

BREW UI Guidelines

 {TextCtl_NumbersRestart,

 TextCtl_NumbersKey,

 NULL, /* Use default name for Numbers mode */

 TextCtl_NumbersExit,

 {TEXT_MODE_NUMBERS, {'N','u','m','b','e','r','s',0}}},

 {TextCtl_SymbolsRestart,

 TextCtl_SymbolsKey,

 NULL, /* Use default name for Symbols mode */

 TextCtl_SymbolsExit,

 {TEXT_MODE_SYMBOLS, {'S','y','m','b','o','l','s',0}}}

};

To the following:

static const ModeInfo sTextModes[] =

{

{ TextCtl_MultitapRestart,

TextCtl_MultitapKey,

TextCtl_MultitapString,

TextCtl_MultitapExit,

{AEE_TM_LETTERS, {'M','u','l','t','i','t','a','p',0}}},

{ TextCtl_NumbersRestart,

TextCtl_NumbersKey,

NULL, /* Use default name for Numbers mode */

TextCtl_NumbersExit,

{AEE_TM_NUMBERS, {'N','u','m','b','e','r','s',0}}},

{ TextCtl_SymbolsRestart,

TextCtl_SymbolsKey,

NULL, /* Use default name for Symbols mode */

TextCtl_SymbolsExit,

{AEE_TM_SYMBOLS, {'S','y','m','b','o','l','s',0}}},

{TextCtl_CustomRestart,

TextCtl_CustomKey,

TextCtl_CustomString,

TextCtl_CustomExit,

{TEXT_MODE_CUSTOM, {'C','u','s','t','o','m',0}}},

};

3. Include whatever variables are required for the TextCtlContext type to support this

custom text mode.

QUALCOMM Proprietary
115

BREW UI Guidelines

An instance of this type is created in the OEM_TextCreate() function when the text control is

initialized.

Verifying implementation

Use OAT to verify your implementation of the text control interface. See the BREW™ OEM

Acceptance Test Guide in the PEK documentation set.

Working with third party language

If you are using the ZiCorp text entry prediction engine in your build, the following steps will

help you integrate the reference source shipped with the Porting Kit. If you are using another

vendor’s product, customization will be needed to implement the IIMUI interface specified in

OEMIMUI.h for that product.

To intergrate the reference source shipped with the Porting Kit if you are using
ZiCorp

1. Add these files to your build:

OEMIMM.h
OEMIMUI.h
OEMIMM.c
OEMIMUI.c

2. Enable the features desired and supported by the eZiText library that are

commented out in OEMFeatures.h.

These features use OEMIMM.c and OEMIMUI.c:
FEATURE_ZICORP_STROKE ZiCorp Simplified Chinese Stroke mode

FEATURE_ZICORP_PINYIN ZiCorp Simplified Chinese Pinyin mode

These features use OEMIMM.c:

FEATURE_ZICORP_EZI_ENeZi English
FEATURE_ZICORP_EZI_THeZi Thai
FEATURE_ZICORP_EZI_ITeZi Italian
FEATURE_ZICORP_EZI_FReZi French
FEATURE_ZICORP_EZI_BPeZi Brasilian Portuguese
FEATURE_ZICORP_EZI_PReZi Portuguese
FEATURE_ZICORP_EZI_ESeZi Spanish

3. Specify any MobileShop less than or equal to 2.0.X.

QUALCOMM Proprietary
116

BREW UI Guidelines

4. Optionally customize the OEMText.c IIMUI interactions and presentation.

5. Optionally customize the options used for obtaining characters in each mode of the

IIMMgr.

NOTE: If you do not use the Zi Corporation eZiText product, you must re-implement

the IIMMgr to use the Key Translation Entry solution your handset provides.

Modifications needed in the event handler for EVT_DIALOG_END

In Mobileshop.c Replace:

 case EVT_DIALOG_END:

 return MShop_SetState(pme, PREV_ENTRY);

With:

 case EVT_DIALOG_END:

 {

 if(pme->m_pText && (pme->m_wState == ST_SEARCH || pme->m_wState ==

ST_CREDITBACK)){

 IDISPLAY_ClearScreen(pme->a.m_pIDisplay);

 if(pme->m_pSK){

 IMENUCTL_Redraw(pme->m_pSK);

 }

 ITEXTCTL_Redraw(pme->m_pText);

 // Focus is in the TextCtl portion when Dialog is ended.

 MShop_SetTitle(pme, APPMGR_RES_FILE, (uint16)((pme->m_wState ==

ST_SEARCH) ? IDS_SEARCH_TITLE : IDS_CREDITBACK_TITLE), NULL);

 IDISPLAY_UpdateEx(pme->a.m_pIDisplay, FALSE);

 }

 }

 return TRUE;

This causes the screen to be redrawn after the additional UI presented for selecting

a character is completed.

QUALCOMM Proprietary
117

BREW UI Guidelines

Integrating native UI applications within BREW devices

The following process describes the set of steps you must perform to support the coexistence

of BREW and non-BREW applications, also referred to as native applications, on the device.

The primary goal is that the user should be able to switch from one application to the other

regardless of whether the application is a BREW or native application. For example, the user

switches from a game (BREW-based) to a browser (native application) and returns to the

same instance of the same game when finished by using the browser.

The following scenario is an example of what can occur if you do not follow the instructions in

the process.

1. Launch a BREW application (game).

2. Press a hot key to launch the browser (native application).

3. Press a hot key to launch the BREWAppMgr (a BREW application).

4. Using the AppMgr, try to resume the same instance of the game being played in

step 1.

5. A new instance of the game is created, instead of resuming the previous instance.

One of the reasons for the problem described above is that you explicitly suspend and resume

BREW by using AEE_Suspend() and AEE_Resume(). This section provides a method to

avoid invoking these functions. Whenever the native software layer takes control of the display,

a corresponding transient BREW application is started, so, for all BREW purposes, a BREW

application is running. BREW maintains an application list, a list of all currently running

applications and the order in which to resume them. Typically, the OEM layer maintains a

similar application list for the native applications. It causes issues when you switch between

native and BREW applications.

The following guidelines can be used in scenarios such as handling incoming calls when a

BREW application is running, and handling incoming SMS when a BREW application is

running. The goal of this procedure is to ensure that the functions AEE_Suspend() and

AEE_Resume() are never invoked. Instead, the same must be accomplished by starting

BREW applications. For example, if a BREW application is running and an incoming call

comes into the system, instead of calling AEE_Suspend() and then putting up a native UI

dialog, you must start another BREW application that corresponds to the native UI dialog and

display the UI dialog in the context of the BREW application.

QUALCOMM Proprietary
118

BREW UI Guidelines

Two scenarios follow, illustrating the differences between call handling in pre-3.0 releases and

in 3.0.x releases.

Pre-3.0 scenario

1. While a BREW application (for example, HelloWorld) was running, the device

received an incoming call.

2. AEE_Suspend() was called from the native software layer.

3. A corresponding UI dialog was put up, advising that the user was in the call.

4. The call ended.

5. AEE_Resume() was called to resume the application (HelloWorld) that was running

when the call was received.

3.0.x scenario

1. As a BREW application (for example, HelloWorld) is running, the device receives

an incoming call.

2. A transient BREW application starts by calling ISHELL_StartApplet().

NOTE: The transient application is also referred to as the shim application. The

purpose of this example application is to ensure that drawing to the screen is done

in the context of a BREW application.

3. HelloWorld is automatically suspended.

4. The transient BREW application is used to put up a UI dialog corresponding to the

call, advising that the user is in the call.

5. The call ends.

6. The transient BREW application is closed by calling ISHELL_CloseApplet().

7. BREW automatically resumes the application (HelloWorld) that was running when

the call was received.

As shown in the example above, In the new procedures, you never have to invoke

AEE_Suspend() or AEE_Resume() directly. This is automatically completed by BREW when

other BREW applications are started. The goal is that there will always be a BREW application

running on the device. This may be the transient BREW application you started to perform

activities, such as display CallDialog, or it may be the BREW application that the end user

invoked; for example, HelloWorld.

QUALCOMM Proprietary
119

BREW UI Guidelines

With the help of this section, only one application list is maintained on the device by BREW;

this list is common to both BREW and native applications. This scenario helps BREW maintain

and adjust the application list including the native applications, running each of the native

applications in a BREW application context. This has a benefit of keeping a single application

stack of BREW applications that can mix with native applications. These applications can all

be moved in the application stack, except for the first application.

With this design, many complex UI interactions are possible between BREW and native

applications as well as full BREW-based UI platforms that integrate applets not built on the

BREW API. The following illustration shows a simple application stack comparison.

.Simple application stack comparison

There are similar considerations when an applet is meant to self-resume or start another

applet already in a suspended state based on an event such as a SMS message or alarm. For

example, if step 2 on page 118 consisted of an application already in the suspended state,

receiving an EVT_APP_MESSAGE and requesting to start itself, it would resume, instead of

having a new applet data created and maintaining a separate instance of the application.

QUALCOMM Proprietary
120

BREW UI Guidelines

To use the following procedure, you need a stable code base of a device with BREW

completely ported. The affected files are OEMAppFuncs.c, OEMModTable.c, OEMHeap.c,

and several native UI files. See the Reference code examples on page 79 and add these items

to your device’s build environment.

NOTE: The comments in the code labeled TODO: are the places in which you should consider

customization.

To integrate native UI applications in a BREW device

1. Integrate the objects from the code samples into your build.

• Add staticapp.o to your build system.

• Add oemidleapp.o to your build system.

• Add oemtransientapp.o to your build system.

• Arrange vpath and INC path to point to relevant areas in which these files were
placed.

2. Modify the NUMBER_UI_APPLETS definition in shimapp.h to reflect the actual

number of shim native applications, minus one for the idle applet that has its own

applet structure.

3. Create a list of ClassID values for your native applications that run as a BREW

shimmed application.

The recommended practice is to put these ClassIDs in a header called shimapp.h.

Add a ClassID reference to the first and last shimmed ClassID you use for an

easier reference to see if a shimmed applet is currently running. These ClassIDs

are used from the AEECLSID_OEM range defined in AEEClassIDs.h as follows:

#define AEECLSID_IDLEAPP (AEECLSID_OEM_APP) // Idle App

#define AEECLSID_CALCAPP (AEECLSID_OEM_APP+1) // Calc App

#define AEECLSID_MAINMENU (AEECLSID_OEM_APP+2) // Main Menu App 7

QUALCOMM Proprietary Problem Resolution Instructions

 // etc.

#define AEECLSID_FIRSTSHIM (AEECLSID_IDLEAPP) // First clsid

#define AEECLSID_LASTSHIM (AEECLSID_MAINMENU)// Last clsid

4. In oemtransientapp.c, add ClassIDs of the applications to be run with the BREW

shim applet to the static AEEAppInfo structure except the idle applet’s ClassID,

since it has its own applet structure.

This is shown with the above example in this code snippet:

QUALCOMM Proprietary
121

BREW UI Guidelines

static const AEEAppInfo gaiTransApp[NUMBER_UI_APPLETS] = {

{AEECLSID_CALCAPP,

NULL,0,0,0,0,0,AFLAG_POPUP|AFLAG_PHONE|AFLAG_HIDDEN},

{AEECLSID_MAINMENU,

NULL,0,0,0,0,0,AFLAG_POPUP|AFLAG_PHONE|AFLAG_HIDDEN},

};

NOTE: The reason these AFLAG_ properties are set is discussed later in the

document.

5. Add the external Mod Info functions to the gGIList in OEMModTable.c as shown in

this code snippet:

static PFNGETINFO gGIList[] = {

IdleMod_GetModInfo,

TransMod_GetModInfo,

NULL};

6. Define a function pointer that describes the function handler. A simple example is

shown in the default shimapp.h as follows:

typedef ui_maj_type (*PFNUIEVENTHANDLER)(void);

NOTE: Your native event handler function may differ from this by taking an

argument of the current event and extra data to pass with this, or another argument

set altogether.

7. Create a map of the event handler function with the corresponding ClassID so your

native event handler can look it up to invoke it as needed. Create this in

oemtransientapp.c like the example below that uses the sample data above:

OBJECT(UIEventFnMap)

{

AEECLSID clsApp;

PFNUIEVENTHANDLER pfnEvtHandler;

};

static const UIEventFnMap gmapUIState[] =

{{AEECLSID_CALCAPP, uistate_calculator},

{AEECLSID_MAINMENU, uistate_mmenu}};

QUALCOMM Proprietary
122

BREW UI Guidelines

NOTE: uistate_calculator describes the native event handler function for the

calculator main state or the calculator application. The same logic applies to

uistate_mmenu. This map looks up the event handler function for this native

application. It allows the native event handler to determine where to dispatch the

event based on the current running applet.

8. To use the event handler first, include shimapp.h in your BREW state or substate.

Call the function CShim_GetEventHandler() to retrieve the handler needed and the

handler that is returned.

9. Add the idle application as the BREW auto-start application. This begins the BREW

application stack after BREW is initialized with AEE_Init() and always remains as

the base-level application. The idle application is persistent as the base application.

10. When all applications are closed, the auto-start application resumes. Include the

shimapp.h header or the header in which you defined your ClassID list:

#include shimapp.h // Class ID of autostart

Handle the OEM_GetConfig() function for the case CFGI_AUTOSTART as

shown,

using the example ClassIds from above:

case CFGI_AUTOSTART:

{

AEECLSID * pc = (AEECLSID *)pBuff;

if(!pBuff || nSize != sizeof(AEECLSID)){

return EBADPARM;

}

*pc = AEECLSID_IDLEAPP;

return AEE_SUCCESS;

Rather than transitioning into the idle state (IDLE_S), transition into your BREW

state (BREW_S) or substate. Call your idle application’s event handler directly after

calling AEE_Init(), so the idle application starts its own initialization.

NOTE: If you have any other applets that must be started prior to the idle applet,

the recommended process is not to run them under a BREW shim applet. This

retains the uncomplicated logic of returning to the idle applet without adding

several details to the idle shim for dispatching a launch to an idle applet when it is

resumed. If some startup applets run as a UI state or as startup animation, idle

initialization, address book initialization, or R-UIM initialization, allow them to run in

a typical state machine manner and call AEE_Init() after the last initialization applet

pops from the application stack.

QUALCOMM Proprietary
123

BREW UI Guidelines

You now have a sufficient framework to launch your idle application as a BREW

shimmed applet. Before building, add a simple applet as a shim to see how a state

pop and push transition works in the context of a BREW shimmed applet. Choose

a simple applet that does not transition into many other states as an example to run

as a shim. The example below involves a calculator application that has a state pop

to close and a message state push to display a message. The message state can

only pop. Choose a similarly simple application that doesn’t branch off into several

states or applications.

NOTE: For the next steps, assume that there is a UI state push and pop

mechanism.

11. Ensure that the source file includes shimapp.h to implement the state push and pop

mechanism. Make the edits that are suitable to your environment to achieve the

effect shown below:

static void ui_state_push(ui_maj_type state)

{

if(uistack_pos >= UISTACK_SIZE-1){

ERR_FATAL("Uistate stack full", 0, 0, 0);

}else{

// If the state is the shimmed applet to be pushed, then push

// The BREW state, or leave the state alone if already BREW’s state

// MY_SHIMMED_APP_S indicates the state value for the calculator

// state/applet in this example

if(state == MY_SHIMMED_APP_S){

PFNUIEVENTHANDLER pfnEvtHndlr;

// UI_BREW_S reflects your actual BREW state or substate

if(uistack[uistack_pos] != UI_BREW_S){

uistack[uistack_pos++] = UI_BREW_S; // Push a BREW state

// Depending on your environment you may need to call your

// BREW initialization routine here as well.

}

// Start the calculator application.

ISHELL_StartApplet(AEE_GetShell(), AEECLSID_CALCAPP);

// Look up the calculator application’s event handler

if((pfnEvtHndlr = CShim_GetEventHandler(AEECLSID_CALCAPP)) == NULL

){

// Error recovery code and return

}else{

pfnEvtHndlr();

QUALCOMM Proprietary
124

BREW UI Guidelines

}

}else{

uistack[uistack_pos++] = state;

}

}

}

NOTE: You may need to make a map that correlates the ui_maj_type with the

corresponding ClassID of the shim of that applet. This makes managing the

transition easier than keeping a switch or if/else series.

This logic starts the shim applet when the shimmed state is pushed onto the stack,

and the event handler is looked up, then invoked to start the applet.

12. Handle the pop functionality, which closes the applet if the state requesting to be

popped is the BREW state and one of the shimmed applets is running.

NOTE: The BREW state can and must pop at some time, such as when the

OEM_Notify() is invoked with OEMNTF_IDLE.

static ui_maj_type ui_state_pop(void)

{

if(uistack_pos == 0){

return(UI_NOSTATE_S);

}else{

// UI_BREW_S is a reference to the actual BREW state value you have

if(uistack[uistack_pos] == UI_BREW_S){

AEECLSID clsApp = ISHELL_ActiveApplet(AEE_GetShell());

// AEECLSID_FIRSTSHIM and AEECLSID_LASTSHIM are references

// to the values added earlier when creating class ID for your

// shim applications.

if(clsApp >= AEECLSID_FIRSTSHIM && clsApp <= AEECLSID_LASTSHIM){

// close this applet without returning to IDLE

// return no state as it will be ignored by the callee

// (shimmed BREW app) anyway

ISHELL_CloseApplet(AEE_GetShell(), FALSE);

return UI_NOSTATE_S; 13 QUALCOMM Proprietary Problem Resolution

Instructions

}

}

return(uistack[--uistack_pos]);

}

QUALCOMM Proprietary
125

BREW UI Guidelines

}

This process verifies if the current state is the BREW state requesting to be

popped. If it is, a further check is made to see if the pop was triggered by a

shimmed application. This method ensures that the BREW state can be popped

when needed and closes the shimmed applet when needed as well.

NOTE: The steps above ensure that the state management mixes well between

BREW applications, shimmed BREW applications, and native applications that are

not shimmed. The next steps ensure that the shimmed applets receive all the

events properly, as they may not have an exact correspondence with the BREW

events.

13. When an event occurs, look up the current event handler based on the ClassID of

the shimmed application that is running and invoke it with the arguments as

needed.

The following flowchart shows the call flow of this step.

Call flow.

QUALCOMM Proprietary
126

BREW UI Guidelines

When an event comes in to the BREW state and the currently executing application

is a native shimmed application or idle application, perform the lookup and call the

event handler. Continue to send the BREW-related events to BREW as you usually

do, and they’ll be safely ignored by the shim. Ensure your event handler source file

contains shimapp.h inclusion to access the event handler lookup function. See the

code snippet below for an example of how these events are sent in case of the

simple event handler:

static ui_maj_type BREWEventHandler()

{

AEECLSID clsActive = ISHELL_ActiveApplet(AEE_GetShell()); 14

QUALCOMM Proprietary Problem Resolution Instructions

// Near the end of the function send the native event

if(clsActive >= AEECLSID_FIRSTSHIM && clsActive <=

AEECLSID_LASTSHIM){

PFNUIEVENTHANDLER pfnEvtHndlr;

// Look up the handler based on the active class ID

if((pfnEvtHndlr = CShim_GetEventHandler(clsActive)) == NULL){

// error recovery and return

} else {

pfnEvtHndlr();

}

}

 }

Characteristics of shim applets

If you have to pay attention to the return value of the event handler, do so in the instances that

invoke the event handler. Take the same action you usually take based on this return value,

for example, launching a new application or closing the current application.

The following is an explanation of some of the properties and functionalities of these shim

applets:

• AFLAG_POPUP is used so the screen does not clear when an applet starts. Often

there are applets that do not occupy the full screen or perform some dither or fade

on the screen in the background rather than erasing it fully.

• AFLAG_PHONE is used so the end key is processed by the shim applet and does

not end the applet prematurely.

QUALCOMM Proprietary
127

BREW UI Guidelines

• AFLAG_HIDDEN is used to prevent the applet from being shown on the Application

Manager or MobileShop®. Any shimmed applet you want present on the Application

Manager may remove this flag.

• EVT_APP_RESUME may need to be inspected to see if the resume should trigger

a call to the native event handler.

• EVT_KEY is handled with the clear key to prevent the applet from prematurely

ending when the AVK_CLR key acts as the close application key in BREW. By

treating it as handled, the shimmed applet processes it fully and, if needed, pops its

state from the state machine. If your key to close an applet is different, modify the

AVK_CLR to match the key defined to close an applet. See the BREW OEM API

Reference Online Help for information about the application close keys.

• The static application helper files provide services to create applet contexts in a

static method with almost no memory allocation, so shimmed applets run in a no

memory situation as they are using static global space for the applet structure.

If your applet needs a situation where the current applet is closed before the next is started,

this is achieved by using the EVT_CLOSE_SELF event in the following manner:

// Now we want to close current app before transitioning to
// the next applet. See the pseudo code below to achieve this.
ISHELL_PostEvent(pme->a.m_pIShell, pme->clsMe, EVT_CLOSE_SELF, 0,
0);
ISHELL_StartApplet(pme->a.m_pIShell, CLSID_OF_APP_TO_START);

NOTE: The next steps convert each application into a shim after you practice with the more

simple applets previously described in this document. The routine is the same—building on

the uistate.c, oemtransientapp.c and shimapp.h files for each new application you introduce

above the shim layer.

Low memory situations

Although some applications will close in the case of a low memory situation, their order on the

application stack is maintained by BREW and they will be relaunched as needed by the

application stack’s determined ordering. Ensure that your idle application and other native

applications do not try to persist function pointers and other free-able resources when they are

closed. They must run safely when their resources are released. Also, it may be prudent to

save off state information, so when the applets are relaunched the user will see the same state

they left the application in when they return to it. To test low memory situations, try a simple

allocation of a large value, such as MALLOC(0xFFFFFFFF);. An alternative to letting your

QUALCOMM Proprietary
128

BREW UI Guidelines

application close is to run it as a background applet when the request to close occurs. You

must take great care with this method because of the following two situations. One is freeing

as much resource as possible to help the allocation requested succeed. The other is managing

the applet stack properly to pop the application off of the background applet list and so that it

becomes active again when necessary. After an applet goes into the background application

list, it will not be resumed unless an explicit ISHELL_StartApplet() is called with its ClassID.

NOTE: Shimmed applets are movable on the stack and interact on the same application stack

as static and dynamic BREW applications.

To verify the effective integration of native applications

1. Ensure that native applets run properly under the shim. Ensure that screen updates

and other services are properly engaged while running under the BREW state for

the shim applets.

2. Ensure that non-shim applets are properly switched between the application stack.

This helps identify areas in the shim state that are unexpected at first. Eventually

there are no applets that are not shimmed, except the startup or initialization

applets, if any.

3. Ensure that the shimmed idle application is properly activated when necessary.

You may have an event that returns directly to the idle application. If so, use

ISHELL_CloseApplet(pme->a.m_pIShell, TRUE) to achieve the same effect.

Privacy check removal

API function, ITAPI_MakeVoiceCall() and IPOSDET_GetGPSInfo(), perform operations that

affect a user’s privacy. The privacy policy for using these functions is set by a carrier or network

operator. BREW implementation of these invokes OEM_CheckPrivacy(), a placeholder that

enforces or customizes the privacy policy.

Enabling the privacy prompt

The sample implementation of a privacy prompt dialog in OEMPrivacy.c is off (inactive) by

default, guarded by FEATURE_BREW_PRIVACY_PROMPT. If you need to enable and

customize this implementation, define the macro FEATURE_BREW_PRIVACY_PROMPT in

OEMFeatures.h. In previous BREW versions, the privacy prompt dialog was on by default, but

in this BREW version, it is off by default.

QUALCOMM Proprietary
129

BREW UI Guidelines

OEM_Check Privacy

OEM_Check Privacy works asynchronously. This allows the OEM to display a

message/prompt to the user or contact the network. The callback is then called with the code

(0 - success) and the request will either proceed or fail based on the policy decision. See

OEM_Check Privacy in the BREW OEM API Reference Online Help.

QUALCOMM Proprietary
130

Setting Up Call Handling

The ITAPI interface gives applications the ability to place voice calls, send short messages,

and receive short messages. It also provides the services to query information regarding the

device states. BREW implements the top layer of ITAPI interface. This implementation uses

methods exported by OEMTAPI.h for the implementation of ITAPI telephony capabilities. ITAPI

SMS capabilities are implemented by using ISMS, ISMSMsg and ISMSNotifier interfaces.

Reference implementation

A reference implementation is provided in the following files: OEMTAPI.c, OEMPhone.h. The

following illustration shows the layout of the implementation regarding applications.

Layout of reference implemention regarding applications

Customizing reference implementation

The above OEM* and AEEPhone.c files are available in source.

Bridled separation

OEMTAPI.c

AEETAPI.c

OEMPHONE.c

AEEPhone.c

BREW Application Execution Environment

DMSS

AEEPhone.c

QUALCOMM Proprietary
131

Setting Up Call Handling

Verifying implementation

Use OAT to verify your implementation of the ITAPI interface. See the BREW™ Porting

Evaluation Kit User Guide in the PEK documentation set.

Call management

Typical device architecture contains a dialer module that presents the device states and

incoming/outgoing call states.

This section discusses the recommended mechanisms for handling device calls in conjunction

with BREW. The recommendations are explained for the two different scenarios. In scenario

(a), which shows a device with a non-BREW dialer, the dialer module is an external entity from

BREW. See BREW-based UI or dialer on page 132. Scenario b shows a device with a UI

dialer as a BREW application. See Managing call and position privacy on page 133.

Handling incoming calls

This information applies to a device that does not have a BREW-based UI or does not integrate

native applications within the BREW context.

If a call is received when a BREW applet is running, you must not suspend BREW. Instead,

start a transient BREW application. Starting this application automatically allows you to

suspend the current application, draw to the screen, and handle the keypad inputs. When the

call is finished, the transient BREW application must be closed using ISHELL_CloseApplet()).

This automatically resumes the suspended BREW application that was running when the call

was received. See BREW-based UI or dialer on page 132.

QUALCOMM Proprietary
132

Setting Up Call Handling

Call flow, scenario a: device with a non-BREW dialer

BREW-based UI or dialer

The BREW-based dialer applet, instead of the transient applet, can be invoked directly to

handle the call.

Call flow, scenario b, device with a BREW dialer

Call Mgr DialerBREW Active App

Incoming Call

EVT_APP_SUSPEND

Dialer dismissed or
call ended.

EVT_APP_START

ISHELL_StopApplet()

EVT_APP_STOP

EVT_APP_RESUME

BREW OEM layer

AEE_Notify()
EVT_NOTIFY

ISHELL_StartApplet ()

QUALCOMM Proprietary
133

Setting Up Call Handling

Handling outgoing calls from a BREW application

Handling outgoing calls from a BREW application is almost the same as handling incoming

calls. The difference is that the privacy settings are checked before the call is placed. In the

reference implementation, there is a code that displays a dialog informing the device user that

a call is about to be placed. The device user can choose to allow or disallow the call. If the

device user allows the call, the voice call is placed.

Managing call and position privacy

You can block each originating voice call and position determination request based on

application ClassID and privilege level by customizing OEM_CheckPrivacy(). Currently,

BREW supports two privacy request types:

• Voice call (PRT_DIAL_VOICE): Passed in for voice call originations.

• Position determination (PRT_POSITION): Passed in for position determination

requests.

For more information see Privacy check removal on page 128.

134
QUALCOMM Proprietary

Setting up SMS

The ISMS, ISMSMSg, ISMSNotifier, ISMSStorage, ISMSBCConfig and ISMSBCSrvOpts

interfaces give applications the ability to send and receive SMS messages, store and retrieve

SMS messages and configure user preferences for broadcast SMS. BREW implements the

top layer of these interfaces. This implementation uses methods exported by OEMSMS.h and

implemented by OEMSMS.c, OWMUASMS.c and OEMUASMSStorage.c on devices using

uasms APIs for SMS and by OEMSMS.c and OEMWSMS.c on devices using wms APIs for

SMS.

Verifying implementation

Use OAT to verify your implementation of the SMS interfaces. See the BREW Porting

Evaluation Kit User Guide in the PEK documentation set.

135
QUALCOMM Proprietary

Setting up battery

The IBattery interface gives applications the ability to query battery and charger-related

information. The IBatteryNotifier interface enables applications to get notified about changes

in battery and charger-related information. BREW implements the top layer of these interfaces.

This implementation uses methods exported by OEMBattery.h and implemented by

OEMBattery.

Verifying implementation

Use OAT to verify your implementation of the IBattery interface. See the BREW Porting
Evaluation Kit User Guide in the PEK documentation set.

QUALCOMM Proprietary
136

Managing Resources

Managing Resources

This section describes the BREW resource management mechanism. BREW currently

implements top visible and ISound with resource management. Resource managment

provides a generic means for objects, including BREW applications, to control resource

access. The resource manager also coordinates and manages the acquisition and freeing of

resources by objects and notifies registered objects when the state of a resource changes.

Some types of resources can only be used by one application at a time. For example, only

one application (the “top visible” application) writes to the display and receives the keypad

events, or the ISound interface allows only one application to use the sound output. Resource

management provides the arbitration (resource arbiter) for which an application is allowed to

control a resource.

Resource control architecture

For each resource being managed, there is a resource interface that controls the object, an

IResourceCtl interface for controlling access, and a singleton resource manager. The

resource arbiter is shared among all resources.

QUALCOMM Proprietary
137

Managing Resources

Resource control architecture

 When you create an instance of the resource interface, it includes the IResourceCtl instance.

The IResourceCtl instance interacts with the resource manager to acquire and free the

underlying resource.

NOTE: Another application can take control of the underlying resource at any time.

In the following example, application A acquires the resource when it is not busy. Later,

application B requests the resource, and it is granted. Since application A registered for status

change notifications, it is alerted when the status changes.

Resource
Manager Resource Arbiter

Resource

Resource
Interface

IResourceCtl
Interface

Resource
Interface

IResourceCtl
Interface

Resource Instance A Resource Instance B

QUALCOMM Proprietary
138

Managing Resources

Resource management example

NOTE: To simplify the interface for most applications, so it doesn’t need to explicitly acquire

and free a resource, define the resource to automatically check and acquire the resource each

time it uses it.

Implementing a resource

For each resource being managed, for example for ISound, the following must be defined:

• an interface

• the associated AEECLSID for the interface

• an AEECLSID for the resource control so the resource manager can identify the

resource

• an AEECLSID for the resource control group privilege. The group privilege ID is used

to grant privileges to an application so that it can access the privileged features of

the ResourceCtl, for example, being able to specify the relinquish list.

Using IQUERYINTERFACE

When you create a BREW resource that supports resource management, it must be derived

from the IQUERYINTERFACE using the INHERIT_IQUERYINTERFACE macro. In the

following sample code, the new class is named IMyResource.

Resource
Manager

Resource
Instance A

Resource
Instance B

Application
A

Resource
Arbiter

Application
B

IRESOURCECTL_Acquire()

IRESOURCECTL_Acquire()

AEEResMgr_Acquire()

AEEResMgr_Acquire()

IRESARBITER_ConfirmAcquire()

IRESOURCECTL_GetStatus()

AEECallback()

Resource Acquired by A

Resource Acquired by B

A is notif ied resource busy

IRESOURCECTL_OnStatusChangeNotify()

Success
Success

Success
Success

Success

QUALCOMM Proprietary
139

Managing Resources

typedef struct _IMyResource IMyResource;
QINTERFACE(IMyResource)
{
INHERIT_IQUERYINTERFACE (IMyResource);
...
}

As part of the inheriting process from IQUERYINTERFACE, the IQI_QueryInterface method

must be implemented. This method must return the object of the type, IResourceC,

associated with the resource when either AEECLSID_IRESOURCECTL or the app specific

resource control ID is passed.

Pointing to AEEResourceCtl

The second step in implementing resource management is including a pointer to

AEEResourceCtl in your resource object. When creating the resource, use

IResourceCtl_New() to initialize this pointer. Be sure to release this object when cleaning up.

Implementing the IResourceCtl Interface

The next step is to implement the IResourceCtl interface. A default implementation for each

of the functions is declared in the OEMResourceCtl.h header. If you wish to use these

functions as is, declare your AEEVTBL with the following code:

static const AEEVTBL(IResourceCtl) gvtMyResourceCtl =
{
IResourceCtl_AddRef,
IResourceCtl_Release,
IResourceCtl_QueryInterface,
IResourceCtl_Request,
IResourceCtl_CanAcquire,
IResourceCtl_SetRelinquishCtl,
IResourceCtl_GetStatus,
IResourceCtl_OnStatusChangeNotify,
};

Otherwise you can override any or all of these methods with a custom implementation. For

example, you could implement your own CanAcquire function to add additional privilege

checks. The interface to AEEResMgr is provided in OEMResourceCtl.h for this purpose.

QUALCOMM Proprietary
140

Managing Resources

Adding checks in the resource code

The final step in implementing resource management is to add checks in the resource code

itself to make sure that the resource object is the current owner before accessing the

underlying resource. The resource object is responsible for knowing when it can access the

resource without conflict. For example, the ISound object checks that it is the owner before it

sets the volume. Depending on your implementation needs, the ownership check could

• Check to see if it was the current owner and fail otherwise

• Check to see if it was the current owner, or if the resource is free, and fail otherwise

• Attempt to acquire ownership (you can acquire ownership even if you already own

it) and fail if it can’t acquire ownership.

Customizing the resource arbiter

The resource arbiter is the central decision maker that determines if a resource can be handed

over to the requesting object. The resource arbiter module is customizable by the OEM/Carrier

and may be implemented as a downloadable module using the class ID,

AEEIID_RESARBITER. There is a single IResArbiter implementation for all resources.

Arbitration

The resource arbiter method, IResArbiter_ConfirmAcquire, is passed the following information

to make its decision:

• Resource owner’s information

– Owner CLSID and instance pointer

– Reason for acquisition

– Relinquish control information

• Relinquish ID list

• List count (-1 == all, 0 == none, otherwise count)

• Requestor’s information

– Requestor CLSID and instance pointer

– Reason for acquisition

– Relinquish control information

QUALCOMM Proprietary
141

Managing Resources

• Relinquish ID list

• List count (-1 == all, 0 == none, otherwise count)

If the current owner has specified a relinquished CLSID list (see IResourceCtl in the OEM API

Reference Online Help), and the requestor is in the list of IDs specified, or if the owner allows

any ID (as in the case of a non-privileged owner), then the arbiter may decide to transfer

ownership based on the rest of the information provided (the simplest implementation grants

the request). If the requestor is not on the CLSID list, the arbiter rejects the request. The

following is a sample implementation of the ConfirmAcquire method for the resource arbiter

(See OEMResArbiter.c).

int OEMResArbiter_ConfirmAcquire(IResArbiter * po, AEECLSID clsReq,
AEEResCtlInfo * pOwner, AEEResCtlInfo * pRequestor)

{
CResArbiter * pMe = (CResArbiter*)po;
int status = EITEMBUSY;
int i;
//
// first check class list to see if owner will allow it
//
switch (pOwner->nClsCount)
{

case -1: // allow anyone to acquire resource
status = SUCCESS;
break;

case 0: // allow no one to acquire resource
status = EITEMBUSY;
break;

default: // check access (relinquish) list
for (i=0;i<pOwner->nClsCount;i++)
{

uint32 privId = pOwner->pClsList[i];
if (privId < QVERSION)
{
// is reason acceptable?

if (privId == pRequestor->dwReason)
{
status = SUCCESS;
break;
}

}
else
{

// does requestor class id match or has group privilege?
if (ISHELL_CheckPrivLevel(pMe->m_pIShell,privId,TRUE))
{

status = SUCCESS;
break;

QUALCOMM Proprietary
142

Managing Resources

 }
 }
 }
 break;
 }
 // At this point, an OEM may choose to accept the access list permission
 // checks and/or add additional decision algorithms such as examining
 // current reason or allowing specific requestor clsid's reguardless
 // of the owner's access list, etc.

 // by default, if the current owner indicates it's busy (with dialogs or ?)
 // and the resource is TopVisible, don't release resource.
 // BREW sets the dwReason to RESCTL_REASON_BUSY if current application
 // responds to EVT_BUSY.
 if (pOwner->dwReason == RESCTL_REASON_BUSY && clsReq ==
AEECLSID_TOPVISIBLECTL)
 status = EITEMBUSY;

return (status);

}

QUALCOMM Proprietary
143

Interoperability with GSM1x

Introduction

QUALCOMM’s GSM1x system architecture allows interoperability between a CDMA2000

radio access network and a GSM core network. A GSM1x device is a regular 1x device with a

few software upgrades.

GSM1x system architecture

GSM1x requirements and recommendations

NOTE: The GSM1x mode is only possible if the device supports R-UIM or SIM cards. If the

device has this capability, proceed with GSM1x.

QUALCOMM recommends that GSM1x support be enabled on a MSM6050 or above platform.

If GSM1x support is needed for an older MSM platform, contact QUALCOMM.

The following DMSS features must be present:

QUALCOMM Proprietary
144

Interoperability with GSM1x

• Sockets

• File system

• TAPI

• Operating system

Prerequisites

GSM1x developers need to familiarize themselves with the following.

• BREW software architecture

– BREW SDK™ User Docs and BREW™ API Reference Online Help

– GSM1x Engineering Specification Kit HB81-31494-2, Rev. B

– GSM1x Application User Guide

• Activation Application section

• SMS Application section

• Supplementary Services Application

– BREW Porting Evaluation Kit User’s Guide

– BREW OEM API Reference Online Help

Understanding GSM1x device architecture

The GSM1x software architecture is built on GMS1x-specific BREW interfaces which, when

supported on the device, become GSM1x-capable. The GSM1x device software architecture

figure below illustrates the software architecture of the GMS1x-enabled device.

QUALCOMM Proprietary
145

Interoperability with GSM1x

GSM1x device software architecture

The GMS1x BREW interfaces expose a common set of APIs at the BREW application layer.

These APIs allow the GSM1x BREW applications to provide GSM1x capability on the handset.

The GSM1x OEM layer in the figure above corresponds to modules that are device- or MSM

platform-specific. The GSM1x OEM module ties the GSM1x BREW interface with the

appropriate device or MSM software. For details regarding the GSM1x applications, see the

GSM1x Application User Guide.

GSM1x device architecture depends on a feature called Run Time R-UIM Enable (RTRE). This

feature must be enabled on the MSM software to support GSM1x mode on the device. The

MSM software must support sending and receiving GSM1x Teleservice IDs (4104 - 4113).

NOTE: The above two features must be supported on the MSM software to enable GSM1x

mode on the handset.

The examples section of the Porting Kit contains reference implementation for the GSM1x

BREW applications. The GSM1x Application User Guide explains how the GSM1x

applications operate.

Understanding GSM1x BREW interfaces

The GSM1x BREW interfaces perform the following general functions:

• Provide the capability to enable or disable the GSM1x mode on the device using the

following interface:

– IGSM1xControl BREW

QUALCOMM Proprietary
146

Interoperability with GSM1x

• Exchange messages with the GSM core network to provide the GSM service layer

transparency and authenticate itself using the following interfaces:

– IGSM1xSig

– IGSMSMS

The following figure illustrates a snapshot of the GSM1x interfaces.

GSM1x BREW interfaces

IGSM1xControl interface

The illustration below shows the IGSM1xControl architecture.

IGSM1xControl architecture

The IGSM1xControl interface provides the following functionality:

• Enables or disables the GSM1x mode.

QUALCOMM Proprietary
147

Interoperability with GSM1x

• Performs GSM1x provisioning.

– Reads the GSM user identity from DFgsm on the SIM/R-UIM.

– Converts GSM identity parameters to CDMA1x identity parameters based on

GSM1x algorithms.

– Generates CDMA PRL based on PLMNs and available acquisition records.

– Writes the obtained information to NV.

• Upon startup, determines if the GSM1x mode should be enabled. If so, it notifies

GMS1x activation application.

• Signals all other GSM1x applications when the GSM1x mode is activated or

deactivated.

The following table shows source files and descriptions.

Source file Description

AEEGSM1xControl.h IGSM1xControl interface specification

OEMGSM1xControl.c Reference implementation for IGSM1xControl

OEMGSM1xProv.c Implementation for GSM1x provisioning

OEMGSM1xCardHandler.c Set of routines to read or write data to the GSM SIM

QUALCOMM Proprietary
148

Interoperability with GSM1x

IGSM1xSig interface

The following illustration shows the IGSM1xSig architecture.

IGSM1xSig architecture

The IGSM1xSig interface provides the following functionality:

• Provide the ability to send and receive GMS1x signaling messages.

• Upon receiving an authentication request, implement GMS1x authentication by

running GSM authentication on the GSM SIM and sending an authentication

response.

• Use GSM1x Teleservice ID (4104) to send and receive GSM1x signaling information.

The following table shows source files and descriptions.

Source file Description

AEEGSM1xSig.h IGSM1xSig interface specification

OEMGSM1xSig.c IGSM1xSig reference implementation

OEMTAPI.c Changes in OEMTAPI.c for GSM1x

QUALCOMM Proprietary
149

Interoperability with GSM1x

IGSMSMS interface

The IGSMSMS interface provides the following functionality:

• Provides a generic GSM SMS API.

• Supports reading and storing GMS SMS messages on the SIM.

• Uses the GSM1x Teleservice ID (4105) to send and receive GSM SMS messages.

• Provides BREW-directed SMS capability using the GSM SMS messages.

The following table shows source files and descriptions.

Implementing the GSM1x interfaces

GSM1x interfaces can be integrated with MSM software.

All current DMSS releases include a new feature, RTRE, which enables a device to

dynamically select the provisioning source.

The following table shows how the device derives provisioning information based on the RTRE

mode.

OEMGSM1xMessage.c Routines to send and receive GSM1x messages

Source file Description

AEEGSMSMS.h IGSMSMS interface definition

OEMGSMSMS.c Reference implementation for IGSMSMS

OEMTAPI.c ITAPI modification for GSM1x

OEMGSM1xCardHandler.c Set of routines to read or write data to GSM SIM.

RTRE mode Provisioning source
NV_RTRE_Config_R-UIM_only R-UIM

NV_RTRE_Config_NV_only NV

Source file Description

QUALCOMM Proprietary
150

Interoperability with GSM1x

The IGSM1xControl interface relies on the RTRE feature to read provisioning information from

multiple sources.

NOTE: To port IGSM1xControl to the device, RTRE in DMSS must be enabled.

The GSM1xControl interface uses the GSM1x Teleservice IDs (4104 - 4113)) to support

porting efforts. It is enabled by defining FEATURE_GSM1x.

By supporting GSM1x mode, the mobile takes provisioning input from at least two sources, the

GSM SIM for GSM1x and another for the CDMA2000 mode. For each provisioning source

supported by the GSM1x mobile, a separate NAM must be assigned. Based on the selected

provisioning mode, the appropriate NAM is used.

The following procedure provides the steps necessary to port the IGSM1x interface to a

BREW-enabled device.

To port the GSM1x interface

1. Ensure that the following features are enabled in the MSM software:

• FEATURE_GSM1x

• FEATURE_UIM

• FEATURE_UIM_R-UIM

• FEATURE_UIM_GSM

• FEATURE_UIM_R-UIM_W_GSM_ACCESS

• FEATURE_UIM_R-UIM_RUN_TIME_ENABLE

2. Ensure that feature flag FEATURE_GSM1x is enabled in OEMFeatures.h.

3. Allocate a signal in the task that BREW is running for use by OEMCardHandler.c.

(This module has a set of routines to support read and write functions to GSM SIM.)

Assign the signal value to OEMGSM1xPROV_UI_SIG_FOR_UIM in the

OEMGSM1xProv.h file.

NV_RTRE_Config_R-UIM_or_drop_back Try R-UIM, if unsuccessful, use NV.

NV_RTRE_Config_SIM_access SIM

QUALCOMM Proprietary
151

Interoperability with GSM1x

4. Allocate a NAM for holding GSM1x provisioning information. The GSM1x NAM can

be the NAM used while the device is running with R-UIM or it can be a new NAM.

Based on the value selected for GSM1x NAM, implement the function

OEMGSM1xPROV_ReturnNAMUsedByProvisioningMode() in the

OEMGSM1xProv.c file.

5. Implement the OEMGSM1xProv_IsModeSupported() function in the

OEMGSM1xProv.c file, based on the provisioning modes supported by the device

(for example, If the device supports both R-UIM and GSM1x modes, then return

TRUE for both, OEMGSM1XPROV_GSM1X and OEMGSM1XPROV_GSM1x).

6. Implement or customize the reference implementation of SendRTRECommand() in

the OEMGSM1xProc.c file.

7. Implement or customize the reference implementation of

OEMGSM1xProv_SetESNUsage() in file OEMGSM1xProv.c.

8. Provide an implementation for

OEMGSM1xProv_ActivateEmergencyCallOnlyState() in OEMGSM1xProv.c. This

function is called if the device must go to emergency mode (for example, when the

device can’t locate a SIM or R-UIM, it goes to the emergency mode).

9. Call the function OEMGSM1x_Control_ProcessPowerUp() in

OEMGSM1xControl.c from the task in which BREW is running. It should be called

after the R-UIM or SIM card is accessible.

(OEMGSM1xControl_ProcessPowerPowerUp() needs to read information from

SIM or R-UIM, so this function should be called after completing PIN verification on

the card.)

10. Enable support for the following data types in OEMConfig.h/OEMAppFuncs.c:

• AEEGSM1xPRLInfo

• AEEGSM1xRTREConfig

• AEEGSM1xIdentityParams

• AEEGSM1xSIDNIDParams

11. Customize the following GSM SMS-related parameters in OEMGSMSMS.c.

Parameter Description

GSMSMS_NV_ENTRY_SIZE Size of GSM SMS entry stored in NV

GSMSMS_NUM_NV_ENTRIES Number of GSM SMS stored in NV

QUALCOMM Proprietary
152

Interoperability with GSM1x

Customizing reference implementation

The reference implementation for GSM1x interfaces is provided with the MSM Porting Kit and

can be used as provided or customized as you need.

Verifying Implementation

Use OAT to verify your implementation of the GSM1x interfaces. See the BREW™ Porting

Evaluation Kit User Guide in the PEK documentation set.

153
QUALCOMM Proprietary

NTP Example BREW
Extension

Introduction

The Porting Kit Examples directory contains a sample implementation for a Network Time

Protocol (NTP) BREW Extension. This extension is provided to support a method for devices

to synchronize their local clock with a reliable network reference on wireless air interfaces that

do not provide the time. The API is fully documented in AEENTP.h.

Handsets are required to have the local clock accurately set when attempting to connect to the

BREW Application Download Server. BREW also uses the device's local clock for evaluating

whether BREW time-based application licenses have expired. OEMs are responsible for

deciding when to invoke INTP APIs for synchronizing the local clock.

Integrating INTP as a Static Extension

OEMs need to perform the following steps

To integrate the INTP extension into the handset build

1. Modify the makefiles to build NTP.c into the device build.

2. Add the following line to OEMModTableExt.c:

extern int NTP_New(IShell *pShell, AEECLSID ClsId, void **ppObj);

3. Add the following line to the declaration of gOEMStaticClassList in

OEMModTableExt.c:

{AEECLSID_NTP, ASCF_UPGRADE|ASCF_PRIV, 0, NULL, NTP_New},

4. Determine where to invoke INTP APIs for synchronizing the local device clock.

QUALCOMM Proprietary
154

OEM Acceptance Process

This section describes a general process for integration and acceptance testing.

The device acceptance process varies from operator to operator, and typically includes many

non-BREW test phases such as network performance, interoperability testing, and UI testing.

Testing of the BREW port is often an additional phase, and requires the use of the BREW PEK.

For a description of the PEK and instructions for using it, see the BREW Porting Evaluation Kit

User’s Guide.

To help you achieve device acceptance on the BREW port, follow the steps below.

To achieve device acceptance

1. Work with the operator to complete the BREW Device Requirements

questionnaire.

This provides you with clear functional and performance requirements.

2. Complete a Device Data Form/Device Pack using the Device Configurator.

This sheet is very valuable to the application developers who are producing BREW

applications in support of the operator’s launch of your device.

3. Run and pass the tests in the PEK.

This extremely important step provides critical feedback about your completed

porting process. PEK performs functional testing, measures performance bench-
marking, and verifies conformance with the Device Data Sheet.

4. Test the end-user experience.

QUALCOMM recommends that you run sample applications on the device and test

the UI interaction between BREW and the native menus; for example, the

management of ringers, address book contacts, wallpaper, screen savers, and so
forth.

QUALCOMM Proprietary
155

Static Modules

In previous BREW Porting Kit releases, OEM support for static modules and applications took

the form of an entrypoint in the OEMModTableExt.c that referenced a function that returned

information regarding static applets. It also returned a PFNLOAD function pointer used to

create the associated IModule. This process created several problems:

• Static modules had limited information they could expose, as opposed to

applications with MIFs.

• These applications and modules had no restriction on file system access and

exhibited different file system behavior than dynamically downloaded versions.

• These applications always ran with system-level privileges.

BREW 3.0 enforces a new mechanism that mandates the use of MIF files for static

applications and modules. Rather than special case handling of static modules, BREW

enumerates all MIFs at startup. After all MIFs have been evaluated, the static module table is

retrieved to determine if any of the MIFs found during initialization are associated with static

code. If so, the static code is called for the module rather than attempting to load a dynamic

module for the MIF.

Associating MIF files with static modules

To associate MIF files with static module code, add an entry to a table in the

OEMModTableExt.c file. An example of this table follows:

-- OEMModTableExt.c -----------------------------

extern int StaticApp_Load(IShell *ps, void * pHelpers, IModule ** pMod);

static const AEEStaticMod gOEMStaticModList[] =
{
 {"fs:/mif/sample.mif", StaticApp_Load},
 {NULL, NULL}
};

QUALCOMM Proprietary
156

Static Modules

In the example above, StaticApp_Load is the name of the exported static application's

PFNLOAD function, and “sample.mif" is the associated MIF file. If the file "sample.mif" is found

in the BREW MIF directory (or as a persistent file - see below), the StaticApp_Load function is

associated with the MIF rather than searching for a dynamic code module. This allows the MIF

to control the behavior of the application or module code exactly as it would if dynamically

downloaded.

NOTE: The “sample.mif” letter case must match the letter case of the “sample.mif”string in the

AEEConstFile structure.

Dynamic and constant MIF files

Although OEMs can place MIF files into the file system after flashing the code, a new

mechanism was added to allow for files of all types to be compiled and linked into the core

software image but appear as if part of the native file system. These rules for constant files

apply to MIF files as well. Constant MIF files are located in the flash image of the phone but

appear to be part of the file system available to BREW. This mechanism leverages a utility

(bin2src.exe) that converts binary files into an equivalent source module (see the BREW PK
Utilities Guide). The source module is then exported and placed into a table that is leveraged

by the BREW to expose the entries as constant files that are available as if part of the native

file system. All such files are associated with a path of the format fs:/xxxxxx where xxxx is the

directory and file name of the file.

A sample version of a converted MIF file follows:

-- samplemif.c ----------------------------------

//**
//*
//* This file automatically generated using BIN2SRC.
//*
//**

#include "AEE_OEMFile.h"
#include "AEEStdLib.h"

// Binary data file contents

static const byte gsData[] = {17\

,0,1,0,1,0,4,0,32,0,0,0,32,0,0,0,64,0,0,0,4,0,0,0,84,0,0,0,72,0,0,0,1,0,232
,3,0,0,0,0,0\

QUALCOMM Proprietary
157

Static Modules

,80,0,0,0,0,1,0,0,80,2,0,0,0,2,0,0,80,9,0,0,0,3,0,84,0,0,0,88,0,0,0,128,0,0
,0,148,0,0,0,156\

,0,0,0,86,105,101,119,2,16,0,1,0,
0,0,1,0,0,0,0\

,0,0,0,0,0,0,0,63,16,0,1,0,0,0,0,232,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0}
;

// Global structure declaration to be added to OEMFSPersistent.c

const AEEConstFile gSAMPLE_MIF = {"fs:/mif/sample.mif",FALSE,156,0,156,(byte
*)gsData};

NOTE: The file above was generated automatically using the bin2src application with the

following arguments:
bin2src -ssample.mif -dfs:/mif

The resulting source file is called:

samplemif.c

After converted to source code form, the file is compiled and linked into the build. To make the

file visible to BREW, an associated entry must be added to the file OEMConstFiles.c as

follows:

-- OEMConstFiles.c ----------------------------

extern AEEConstFile gBREWAPPMGR_MIF;
extern AEEConstFile gVIEWAPP_MIF;
extern AEEConstFile gSAMPLE_MIF;

static const AEEConstFile * gpPersistentFiles[] = {
 &gBREWAPPMGR_MIF,
 &gVIEWAPP_MIF,
 &gSAMPLE_MIF,
 NULL};

After it has been added to the build in source form and added to the persistent file list in

OEMConstFiles.c, the associated MIF, or any other file, is exposed by BREW as if it had been

installed into the file system. These changes allow BREW to enumerate the MIF along with all

of the dynamically downloaded MIF and to associate the MIF with statically linked source code

that is associated with the specified MIF.

QUALCOMM Proprietary
158

Static Modules

Important notes

The following is important information that should be noted.

• This mechanism replaces the 1.x-2.x support for static applications or modules.

Compiling static applications that have not been converted as outlined above will

result in a compilation error for PFNGETINFO;

• This mechanism allows OEMs to leverage either persistent or dynamic MIF files for

static code.

• The root name specified for the MIF file must match the name of the MIF in the file

system or constant file system table.

• By default, constant MIF files are marked as upgradeable (fixed = FALSE). This

allows them to be upgraded over the air if necessary;

• Constant MIF files must be specified with the root directory of fs:/mif in order to be

supported correctly on the handset and simulator.

QUALCOMM Proprietary
159

Appendix A: Using the OEM
Extranet

Using the BREW OEM web sites

Obtaining an account

You can obtain online information and support by visiting the BREW OEM Extranet at

https://brewx.qualcomm.com/oem/home.jsp. You must have an account before you can

access the OEM Extranet.

To obtain an OEM Extranet account

1. Send an email to brew-oem-support@qualcomm.com and include the following

information:

a. Your full name

b. Your email address

c. The company name

NOTE: Before sending this request, verify that your company has an agreement

with QIS.

d. Your title

A new account is generated, and a notification email is sent to you.

2. After you receive the notification email with your user name and password, you can

log into the OEM Extranet account (https://brewx.qualcomm.com/oem/home.jsp).

3. Change your password.

4. Choose Information and verify the information you entered. If you find a

discrepancy, contact brew-oem-support@qualcomm.com for correction.

The OEM Extranet home page opens.

QUALCOMM Proprietary
160

Appendix A: Using the OEM Extranet

Understanding the customer ID

The customer ID is your QUALCOMM Support Number.

Obtaining porting support

To report problems or request support for porting BREW on devices, send an email message

to brew-oem-support@qualcomm.com.

To obtain platformIDs that reference BREW configuration and related functions, send an email

message to brew-oem-support@qualcomm.com.

Requesting new BREW features

Do you have ideas for features that would make the BREW OEM Porting Kit for MSM
Platforms, more valuable and useful to you? If so, send us email at

brew-request@qualcomm.com. Each request is evaluated, and a member of the New

Features Response Team will respond to your email.

Obtaining release notes

Release notes are produced with each release of the Porting Kit software. Release notes are

located on the OEM Extranet under the specific release number.

Understanding known issues

Outstanding known issues for a specific release are located on the OEM Extranet under the

specific release number.

Obtaining BREW OEM Notes

These notes are designed to provide workarounds for any newly discovered problem,

additional information on specific features, and solutions to commonly asked questions.

Review the BREW OEM Notes pertinent to the release you are using and verify that all the

fixes described in the notes are applied to your build.

Check the OEM Extranet frequently for any updates, as there is no planned BREW OEM Note

release schedule. QUALCOMM sends email notifications on new OEM Notes to registered

email addressees.

QUALCOMM Proprietary
161

Appendix B: DMI
Compliance

The mobile device must be compatible with all BREW tools, including the AppLoader, BREW

Logger, The Grinder®, and Shaker. These tools use the Diagnostic Monitor Interface (DMI) of

the QCT DMSS. The DMI used by these tools must be functioning properly on the device, so

BREW application developers can transfer applications to the device and test them with the

additional tools BREW provides. See DMI compliance command on page 162 for details.

To verify the DMI compliance of the mobile device

1. Install the BREW Porting Evaluation Kit (PEK) from the OEM Extranet.

2. Launch PEK Studio tool by clicking Start > Programs > BREW Porting

Evaluation Kit > PEK Studio.

3. Run the Connectivity Test in the PEK Studio tool (see the BREW Porting

Evaluation Kit Online Help for detailed instructions). If the test fails, refer to the PEK
Test Cases Guide for instructions for retrying the test. If the test still fails, ensure

that the mobile device has the proper implementation for all DMI commands

mentioned in DMI compliance command on page 162.

4. Run the PC Interface Test in the PEK Studio tool. Verify that all the test cases

passed by either referring to the PEK Studio status window messages or by

generating the PC Interface Test Report in the PEK Studio (see the BREW Porting

Evaluation Kit User’s Guide for detailed instructions). If the test fails, see the

instructions for retrying the test. If the test still fails, ensure that the mobile device

has proper implementation for all the DMI commands mentioned in DMI

compliance command on page 162 are properly implemented on the mobile

device.

If the Connectivity Test and the PC Interface Test continue to fail, and you have any

questions on the DMI compliance of your mobile device, contact QUALCOMM or

brew-oem-support.

QUALCOMM Proprietary
162

Appendix B: DMI Compliance

DMI compliance command

The following commands must be implemented on the mobile device for it to be DMI-

compliant.

Command
code

Operation
code Packet name Description

0 N/A Version Number
Request/Response

Gets device software information
and other static configuration data.

1 N/A ESN Request/Response Gets the ESN of the device.

12 N/A Get Current DMSS Status
Request/Response

The status message asks for
current DMSS status information

15 N/A Logging Mask
Request/Response

The status message asks for
current DMSS status information.

16 N/A Log Request/Response Retrieves a single queued log item
from the DMSS. The DMSS
removes the oldest log item (if any),
places it in a Log Response
Message, and outputs the log item
to the DM.

28 N/A Diag Version
Request/Response

The DM checks the version of the
DM/DMSS packet interface in use
by the DMSS by sending a Diag
Version Request Message. The
DMSS responds by sending a Diag
Version Response Message
containing the version number. If the
version used by the DMSS is not the
same as that used by the DM,
proper interpretation of all packets is
not guaranteed.

29 N/A Time Stamp Request/Response Requests the current time in the
DMSS.

QUALCOMM Proprietary
163

Appendix B: DMI Compliance

31 N/A Message Request/Response Retrieves the DMSS diagnostic
message. As a diagnostic aid, the
DMSS records text messages at
various points in the execution. The
messages provide developers with
some insight into the behavior of the
DMSS program.

Message level (minimum message
severity level):

• 0000: all messages
(MSG_LVL_LOW)

• 0001: medium and above
(MSG_LVL_MED)

• 0002: high and above
(MSG_LVL_HIGH)

• 0003: error and above
(MSG_LVL_ERROR)

• 0004: fatal error only
(MSG_LVL_FATAL)

• 00FF: no messages
(MSG_LVL_NONE)

32 N/A Device Emulation Keypress
Request/Response

Device keypress and the other
device conditions are provided
through the serial data interface.
The request message contains the
indicated keypress. This keypress is
inserted in the stream of key
presses between the device driver
and the UI software.

33 LOCk = 0

UNLOCK = 1

Device Emulation Lock/Unlock
Request/Response

Locks and unlocks the handset. To
prevent the collision of input, it is
recommended that you restrict
remote input of devices keystrokes.
This is achieved by locking and
unlocking the device. On invoking
this Lock request, the DMSS locks
the device, which prevents user
input, and processes the Device
Emulation Keypress Messages. On
invoking this Unlock request, the
DMSS unlocks the handset.

Command
code

Operation
code Packet name Description

QUALCOMM Proprietary
164

Appendix B: DMI Compliance

41 Mode = 1 Mode Change
Request/Response Message

Puts the DMSS (device) in digital
offline mode. The only exit from the
offline mode is through a restart.
The device may be power cycled to
produce this reset, or the DM (OEM
layer) may send a Reset command
to reset the device.

70 N/A Security Password
Request/Response

Sends the security password to the
phone to unlock secure operations.
Following are the diagnostic
packets with secure operations:

• Memory Peek Request/
Response

• Memory Poke Request
Response

• NV Memory Peek Request/
Response

• NV Memory Poke Request
Response

89 0 EFS Operation Request Create Directory: Creates a
specified directory on the device.

89 1 EFS Operation Request Remove Directory: Removes a
specified directory from the device.

89 2 EFS Operation Request Display Directory List (Enumerate
Subdirectories): Displays a list of
directories present in the specified
directory on the device.

89 3 EFS Operation Request Display File List (Enumerate Files):
Displays a list of files present in the
specified directory on the device.

89 4 EFS Operation Request Read File: Reads the file from the
device.

89 5 EFS Operation Request Write File: Writes to the specified file
on the device.

89 6 EFS Operation Request Remove File: Removes specified
file from the device.

Command
code

Operation
code Packet name Description

QUALCOMM Proprietary
165

Appendix B: DMI Compliance

89 7 EFS Operation Request Get File/Directory Attributes: Gets
file attributes (EFS attributes,
creation date, logical size).

89 8 EFS Operation Request Set File/Directory Attributes: Sets
file attributes (Unrestricted,
Permanent, Read-Only, System
Permanent, or Remote File).

89 10 EFS Operation Request Iterative Directory List: If this
command is enabled, the Display
Directory List operation is not
supported. The purpose of this
operation is the same as that of the
Display Directory List operation.

89 11 EFS Operation Request Iterative File List: If this command is
enabled, the Display Directory List
operation is not supported. The
purpose of this operation is the
same as that of the Display File List
operation.

89 12 EFS Operation Request Get Free and Used EFS Space: Get
available space and used space on
the DMSS (device).

92 N/A Configure Communications This command is used to query
available communications speed
(bit rates) and to change the bit rate
in the DMSS.

93 N/A Extended Logging Mask
Request/Response

The DM sends the Extended
Logging Mask Request Message to
the DMSS to collect (or stop
collecting) log data of a specified
sort. The mask is a list of bits with
each bit position specifying a
different type of log data.

Command
code

Operation
code Packet name Description

QUALCOMM Proprietary
166

Appendix C: Test Enable Bit Removal

Appendix C: Test Enable Bit
Removal

The test enable bit functionality was removed in BREW 3.1. The associated changes

described below provide several benefits to speed the development and commercialization of

both BREW devices and BREW applications. The major benefits of removing the test enable

bit include:

• Enables authenticated BREW developers to develop and test applications on

standard BREW devices from Operators’ sales stores or other distribution points

without risk.

• Enables debugging by OEMs during porting without losing all preloaded or existing

applications. By removing the test enable bit, OEMs will be able to more rapidly and

conveniently manipulate these device elements without undesirable, adverse affects

and thereby be able to more rapidly commercialize BREW devices.

• Εnables OEMs and carriers to better test BREW devices in a fully “commercially ready”

state. By enabling debug functionality without Test Enable mode on, the device is in a

completely accurate state to a commercial device, as opposed to being in a mode that differs

from the commercial mode in many respects.

The following table shows what OEMs and Developers previously did using test enable bit and

how each task is accomplished in 3.1 with the concept of “test enabled bit” removed.

QUALCOMM Proprietary
167

Appendix C: Test Enable Bit Removal

•

Old behaviour (test enable
bit)

New behaviour

Test
signatures

BREW Test Signatures are
rejected unless test enable bit is
on.

BREW Test Signatures is always
accepted.

Tail-less MIFs Tail-less MIFs are rejected
unless test enable bit is on.

Tail-less MIFs are accepted if test
signature is present.

BREW debug
key sequences

Access to BREW diagnostic
functionality (debug keys) is
denied unless test enable bit is
on.

Access to BREW debugging
functionality is always granted.
Debug key sequences are improved,
made more secure and capable (see
SDK User's Guide.

Testing BREW-
directed SMS

BREW-directed SMS must
start with "//" when Test Enable
bit is off. BREW directed SMS
must merely contain "//" when
Test Enable bit is on.

Testing BREW-Directed SMS
(relaxing parsing requirement)
governed by new Debug Key
sequence (see SDK User's Guide).

dlservers.dat IDownload APIs for getting
servers from dlservers.dat and
setting the download server
disabled unless Test Enable bit
is on.

IDownload APIs unrestricted
(guarded by PL_DOWNLOAD
instead

QUALCOMM Proprietary
168

Index

A
Acceptance test 154
Acronyms 10
ADS, connecting to 92
AEE Virtual Key code 27
AEE_ResumeCallback interface 86
AEECallback 86
Annunciators 44

OEM_Disp_Annunciators 19
API (Application Programming Interface) 85
App Manager, enable 20, 90
Application

Download 90
Downloading 77
Downloading to a device 91
Dynamic installation 77
Managing 77

Applications
Integrating native UI apps within BREW

devices 117
Asynchronous interfaces 84

B
Bitmap buffer 37
Bitmaps 39
Blocking

position determination request 133
voice call 133

BREW Simulator 45
BRIDLE 22, 94

Initializing SWS Handler 24
Integration, implementing 101

BRIDLE, Integration, testing 102

C
Call

Handling 130
Handling incoming 131
Handling outgoing 133
Management 131
Privacy, managing 133

Call flow 110
Callbacks 85
Characters, numbers, and symbols, inputting 112

Chinese (simplified) encoding type 42
Components of Porting Kit 14
Configuring a device 19
Configuring device 63
Custom controls 112
Customer ID 160
Customizing

ITAPI interface 130
ITextCtl interface 113, 115
multimedia interfaces 152

D
Device

Configuration 19
Device configuration 63
Diagnostic Monitor Interface (DMI) 161
Dialer 132
Display

Support 18, 36
DMI compliance 161
DMI compliance command 162

E
Enabling the privacy prompt

FEATURE_BREW_PRIVACY_PROMPT
macro 128

English only devices 113
EUC-CN encoding types 42
Event

Configurable timers for key repeat events 27
Handling 17
Key 27
Sending to BREW 27

Exension
Downloading 77

Extranet
obtaining account 159

Extranet, Using the OEM 159

F
File types 77

installing 80
Fonts 41
Frames 39

QUALCOMM Proprietary
169

G
Generic Serial Interface 47
Glossary 10
GSM1x 143

architecture 144
BREW interfaces 145
Implementing 149

H
Handler, registering a 108
Handset physical and hardware characteristics

functions used to retrieve 63

I
IBatteryNotifier interface

setting up battery 135
IControl 111
Image viewer, creating an 111
IMedia interface

understanding 145
Implementing 115

IRegistry interface 68
ITextCtl interface 112, 113

Implementing a resource 138
AEEResourceCtl 139
checks in the resource code 140
INHERIT_IQUERYINTERFACE macro 138
IQUERYINTERFACE 138

Initialize BREW 16
Initializing BREW 23
INotifier 109
Inputting characters, numbers, and symbols 112
Install

BREW files 77
Dynamic application 77

Internal application context 85
IRegistry interface

implementing 68
verifying 70

ISHELL_Resume interface 86
ITAPI interface

customizing reference implementation 130
reference implementation 130
verification 131

ITextCtl interface 112
customizing 113, 115
implementing 112
reference implementation 113
third party language 115, 116
verification 115

J
Japanese encoding type 42

K
Keypress, multiple 31
Korean encoding type 42
KSC5601 encoding type 42

L
Low memory 127

M
Managing

calls 131
Managing resources 136

ISound 136
Top Visible 136

Memory security 94
MIF files

Associating with static modules 155
Dynamic and constant 156

Multimedia interfaces 143
customizing 152
implementing 149
understanding 145

N
New OEM porting features, how to request 160

O
Obtaining

OEM extranet account 159
OEM extranet

obtaining account 159
OEM porting features, requesting new ones 160
OTA download 90
OTA downloads, enable 20

P
packet data dormancy 71
Path length and mapping 71
Persistent files, creating 107
PNG support 43
Position privacy, managing 133
Privacy check removal 128

IPOSDET_Get GPSInfo() 128
IPOSDET_GetGPSInfo() 21
ITAPI_MakeVoiceCall() 21, 128

QUALCOMM Proprietary
170

OEM_CheckPrivacy() 128

Q
Quick reference 16

R
Reference implementation

ITAPI interface 130
Release notes 160
Requesting new OEM porting features, how to

160
Resource arbiter 140

AEEIID_RESARBITER 140
IRESArbiter_ConfirmAcquire 140
sample implementation 141

Resource control architecture 136
IResourceCtl interface 22, 136
resource interface 136
singleton resource manager 136

RUIM 64
RUIM, downloading to 93

S
Sending joystick events 34

AEE_Event joystick events 34
event sent by BREW 34
joystick event parameters 35

Sending pen events 33
AEE_Event pen events 33
event sent by BREW 33
pen event parameters 34

Service extensions 84
Service extensions, system-level 84
Shift-JIS encoding type 42
Shim applications, characteristics of 126
Signature verification 90
SIO 47
SMS

management 131
setting up 134

Static application, creating 104
Static Extension DLLs, creating 83
Support, obtaining 160
Suspending and resuming BREW 26

T
Task, Identifying and defining 23
Terminating BREW 26
Test enable bit removal 166
Text control functions and requirements 115

Text, devices using English 113
Third party language

ZiCorp eZiText 115, 116

U
UI

Guidelines 103
Integrate native device apps with BREW 21

Understanding IMedia interface 145
Unicode encoding type 42

V
Verifying

IRegistry interface implementation 70
ITAPI interface implementation 131
ITextCtl interface implementation 115

	Introducing the BREW OEM Porting Guide for MSM Platforms
	What’s in this guide
	Acronyms and terms

	OEM Porting Kit Overview
	What’s in the Porting Kit?
	BREW from an integration perspective

	Quick-Start Guide to Porting
	Before you begin
	Step 1. Initialize BREW
	Step 2. Set up event handling
	Step 3. Implement display support
	Step 4. Configure the device
	Step 5. Perform the first device build
	Step 6. Enable BREW features
	Step 7. Enable the BREW Application Manager and OTA downloads
	Step 8. Integrate the native UI within BREW-enabled devices
	Step 9. Protect memory with BRIDLE
	Step 10. Implement the Resource Manager
	Step 11. Perform testing

	Initializing BREW
	Getting ready to initialize
	Identifying the BREW task
	Defining a task signal
	Modifying the task loop
	Initializing BRIDLE SWI Handler

	BREW initialization
	Troubleshooting

	Terminating BREW
	Suspending and resuming BREW

	Sending Events to BREW
	Sending key events
	Examples
	Configurable timers for key repeat events
	Application behavior

	Multiple keypress support
	Handling keyguard, flip, screen rotation, and headset
	Sending pen events
	Sending joystick events

	Implementing Display Support
	Core display information
	Display
	Bitmaps
	Application frames

	Fonts
	BREW Bitmapped Fonts
	Encoding type support

	PNG support
	Scenarios

	Annunciators
	Using the Brew Simulator
	Verifying implementation

	Understanding the Generic Serial Interface
	Device-initiated service
	Application-initiated service
	Application design considerations
	Disconnection of a device while talking to an application
	Exiting an application during device communication
	General application behavior with unexpected data

	Using the BSCOP
	Command and response framing
	Examples of BSCOP command sequences

	IPort interface
	Device-initiated usage
	Application-initiated usage
	Closing a port
	Serial port configuration
	Application registration for supported devices

	Using DMSS changes to enable BREW SIO
	File changes

	Configuring Devices
	Physical and hardware characteristics
	BREW heap

	Download services parameters
	Configuring R-UIM-based devices
	R-UIM interface
	Overview of a R-UIM-based device
	Overview of BREW on a R-UIM-based device
	Porting BREW on R-UIM devices

	Verifying implementation
	Maximum path length and mapping
	Appearance
	Packet Data Dormancy
	BREW file access restrictions
	Architecture
	Porting instructions
	Special instructions for 5100 series MSM

	Managing and Downloading Applications and Extensions
	BREW file types and dynamic application installations
	Installing BREW files
	Creating static extension DLLs
	Sample code for the exported function

	Asynchronous BREW Interfaces
	System-level service extensions
	Application contexts
	Callbacks
	Application interface
	System service
	Sample implementation

	Application downloads
	BREW signature verification

	Enabling the BREW Application Manager for OTA download
	Downloading BREW applications
	Downloading to R-UIM devices

	Memory Security Through BRIDLE
	BRIDLE-I architecture
	Supervisor to User
	User to Supervisor mode
	Memory regions
	MMU/MPU configuration
	Scatter load

	Implementing BRIDLE integration
	Verifying implementation of BRIDLE integration

	BREW UI Guidelines
	Creating a static application or extension
	Obtaining a ClassID
	Creating the extension or application

	Including multiple applications or extensions
	Creating persistent files
	Registering a handler
	Using and extending INotifier
	Notification scenario
	Call flow
	Implementing an INotifier class

	Extending IControl and creating an image viewer
	Implementing the custom controls

	Extending text control
	Implementing the text control interface
	Reference implementation
	Verifying implementation
	Working with third party language

	Integrating native UI applications within BREW devices
	Characteristics of shim applets

	Privacy check removal
	Enabling the privacy prompt
	OEM_Check Privacy

	Setting Up Call Handling
	Reference implementation
	Customizing reference implementation
	Verifying implementation
	Call management
	Handling incoming calls
	BREW-based UI or dialer
	Handling outgoing calls from a BREW application
	Managing call and position privacy

	Setting up SMS
	Verifying implementation

	Setting up battery
	Verifying implementation

	Managing Resources
	Managing Resources
	Resource control architecture
	Implementing a resource
	Customizing the resource arbiter

	Interoperability with GSM1x
	Introduction
	GSM1x requirements and recommendations
	Prerequisites

	Understanding GSM1x device architecture
	Understanding GSM1x BREW interfaces

	Implementing the GSM1x interfaces
	Customizing reference implementation
	Verifying Implementation

	NTP Example BREW Extension
	Introduction
	Integrating INTP as a Static Extension

	OEM Acceptance Process
	Static Modules
	Associating MIF files with static modules
	Dynamic and constant MIF files
	Important notes

	Appendix A: Using the OEM Extranet
	Using the BREW OEM web sites
	Obtaining an account
	Understanding the customer ID
	Obtaining porting support
	Requesting new BREW features
	Obtaining release notes
	Understanding known issues
	Obtaining BREW OEM Notes

	Appendix B: DMI Compliance
	DMI compliance command

	Appendix C: Test Enable Bit Removal
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

