
BREWTM OEM
Reference Guide for BRIDLE

QUALCOMM Incorporated
5775 Morehouse Drive

San Diego, CA. 92121-1714
U.S.A.

This manual was written for use with the BREW SDKTM for Windows, software version 3.1. This manual
and the BREW SDK software described in it are copyrighted, with all rights reserved. This manual and
the BREW SDK software may not be copied, except as otherwise provided in your software license or
as expressly permitted in writing by QUALCOMM Incorporated.

Copyright © 2004 QUALCOMM Incorporated

All Rights Reserved

Printed in the United States of America

All data and information contained in or disclosed by this document are confidential and proprietary
information of QUALCOMM Incorporated, and all rights therein are expressly reserved. By accepting
this material, the recipient agrees that this material and the information contained therein are held in
confidence and in trust and will not be used, copied, reproduced in whole or in part, nor its contents
revealed in any manner to others without the express written permission of QUALCOMM Incorporated.

Export of this technology may be controlled by the United States Government. Diversion contrary to
U.S. law prohibited.

Binary Runtime Environment for Wireless, BREW, BREW SDK, BREWStone, Mobile Station Modem,
MSM, MobileShop, gpsOne, Eudora, Compact Media Extension, CMX, and PureVoice are trademarks
of QUALCOMM Incorporated.

QUALCOMM, TRUE BREW, The Grinder, and QChat are registered trademarks of QUALCOMM
Incorporated.

All trademarks and registered trademarks referenced herein are the property of their respective owners.

BREWTM OEM Reference Guide for BRIDLE

80-D4690-1 Rev. B

May 18, 2004

Contents

iii

Contents

Introduction 4

In this document 4

Best Practices for OEMs 5

Enforcing the safeguards 6

Memory Protection 7

Memory regions 7
Scatter Load 7

Context Switches 10

Supervisor-to-User mode 10
User-to-Supervisor mode 11

Boundaries 12

Type II Interfaces 13
Thin AEE 13
Thick AEE 14
OEM API Design 14

BRIDLE_SWI 15

BRIDLE Macros 17

BRIDLEX_*() 17
PACKBRIDLEX_*() 18

packbridle() inline 19
UNPACKBRIDLEX_*() 20
UNPACKBRIDLE_PARAM_X 21
BRIDLE_CHECK_* 22
BRIDLE_COPY_*_USER 23
BRIDLE_SUBSYS_* 23

Examples 25

Contents

iv

OEMFoo.h 25
BRIDLEInit.h (or BRIDLEInit_OEM.h) 25
BRIDLEInit.c (or BRIDLEInit_OEM.c) 25
bridle_foo.c 26
bridle_foo.h 26
AEEFoo.c 27
Complex parameter checking 28
Callbacks 29

Static Callbacks 29
AEECallbacks 30
Handles 31
Scatter Load 33

Other Considerations 34

Supervisor mode callback mechanisms 34
Locking interrupts 34
Interrupt service routines 35
Static applications 35
Code review 35
OAT Tests 36

4

Introduction

This document presents the concepts of the BREW Isolated Domain for Legitimate Execution

(BRIDLE), and provides instructions for and examples of using BRIDLE to protect BREW from

defective or malicious applications.

In this document

The remainder of this document contains the following sections.

Section Description
Best Practices for OEMs Gives recommendations that will help you get the maximum

protection from BRIDLE.

Memory Protection Discusses memory protection in the context of various hardware
environments.

Context Switches Explains the process of switching between Supervisor and User
modes.

Boundaries Explains the four types of interfaces, and how BRIDLE
boundaries are used in each.

BRIDLE_SWI Explains the BRIDLE-SWI function.

BRIDLE Macros Provides macros that you can use to switch between Supervisor
and User modes.

Examples Provides example “BRIDLEing” sessions

Other Considerations Discusses miscellaneous issues that you may encounter in the
BRIDLE domain.

5

Best Practices for OEMs

This section contains recommendations for ensuring that BRIDLE is able to perform its most

important job -- protecting the system from corruption by ensuring that software executing in

User mode does not enter into in Supervisor mode.

Memory protection provides a defense against the most direct attempts to corrupt the system.

Any BRIDLEd interface, however, provides a gateway into Supervisor mode and therefore

presents a potential risk to the security of the system. The key to maintaining security is

ensuring that no sequence of User mode actions can result in corruption. For example, a

BRIDLEd function for reading from sockets could be misused to overwrite system memory

unless appropriate precautions are taken in the BRIDLE layer.

NOTE: The initial implementation of BRIDLE will halt execution when violations are detected.

This does not guarantee that Supervisor mode software will continue to execute normally, but

it does protect against corruption.

Following are some examples of some precautions that should be taken to protect the system.

• Every buffer passed across the Supervisor mode boundary must be validated (at

least) once in Supervisor mode. Memory that will be written or read should be

checked against the corresponding permissions that apply to User mode for that

range of memory.

• Refrain from passing invalid arguments to system-level software, unless it is clear

that the system-level software is safeguarded against invalid values. For example, if

a BRIDLEd function accepts a socket descriptor from User mode and then hands it

directly to the lower layer, it would allow User mode software to pass invalid socket

descriptors to system functions, which may or may not be a problem depending upon

the system software implementation. Also, depending on the implementation, it

could allow reading or writing from a socket the User mode task does not own.

• Once in Supervisor mode, do not trust any values that are stored in User-writable

memory. In particular, any pointer read from that memory is particularly dangerous.

For example:

6

Best Practices for OEMs

– Interfaces stored in User mode memory should not be relied upon when in

Supervisor mode. This would leave an opening for User mode code to "hijack" the

Supervisor mode code by modifying the interface method pointers.

– Linked lists stored in User mode memory could be corrupted by User mode.

Supervisor mode using such a linked list could loop infinitely, overrun buffers, or

perform any number of unpredictable actions.

Enforcing the safeguards

In general, the easiest way to enforce the safeguards described above is to make use of

handles or descriptors to identify system resources to User mode software, and storing the

corresponding structures and any related pointer entirely in Supervisor mode. The handle, a

small integer, is easily validated against a range after the transition to Supervisor mode.

Keep in mind that this list is not a compete prescription for a secure implementation, and that

the complexity and difficulty of proper BRIDLEing will vary with the complexity of the

underlying system software. For example, if complex processing is performed in the system

layer, and the system layer does not provide robust validation of arguments, then the BRIDLE

layer may have to perform very complex argument validation before calling the system

software. Similarly, if an unexpected sequence of function calls could present a problem for

the system software, the BRIDLE layer will have to take whatever steps necessary to ensure

the appropriate sequencing.

Another thing to remember is that the potential for bugs in the underlying system software

presents an unavoidable vulnerability. For example, if something as complex as PNG

decoding is performed in the system layer, there is the possibility for certain malformed PNG

files to trigger a buffer overrun or some other error that would corrupt the system. This kind of

error is not something that could be anticipated at the BRIDLE layer, and even if it were

anticipated the required safeguards would be unreasonably complicated and slow. The most

important guideline to apply here is to keep as much complexity as possible out of the system

layer, and perform that work in User mode instead.

Implementing other precautions not discussed in this document, such as employing safe

programming practices, audits, and adversarial testing, is also highly advisable.

7

Memory Protection

The mechanism used to implement memory protection may vary depending on the hardware.

For example, the ARM9 core contains a Memory Management Unit (MMU), while the ARM7

core utilizes a Memory Protection Unit (MPU), and other devices may use yet other facilities.

For the purposes of this document, MMU will be used generically.

Memory regions

When the CPU needs to access a particular location in RAM, the request is first verified by the

MMU, based on the current operational mode. An access violation will result in a data abort.

In BRIDLE, there are five distinct memory regions defined:

1. Supervisor Read-only, User No-access:
This region is used for system code and const data.

2. Supervisor Read-write, User No-access:
This region is used for system data and ZI (zero-initialized data, or bss).

3. Supervisor Read-write, User Read-only:
This region is used for a small subset of system data that needs to be read by user

mode. In particular, the module SWI numbers are required as arguments to the

BRIDLE SWI in user mode, but are owned by supervisor mode.

4. Supervisor Read-only, User Read-only:
This region is used for user code and const data.

5. Supervisor Read-write, User Read-Write:
This region is used for user data and ZI.

Scatter Load

What is described in this section is ARM specific, but most software architectures will have a

similar mechanism.

8

Memory Protection

How the image gets loaded into RAM is specified by the ELF file. The ELF file is constructed

by the linker using two inputs: the object code (i.e. libraries and object files) and the scatter

load description file.

While the syntax of the scatter load file is beyond the scope of this document, it is important to

understand that it is a collection of rules that describe what portions of object code end up in

what regions of RAM. For example, there is a rule that says that all AEE library code/const is

to be loaded into the Supervisor Read-only, User Read-only section of RAM. Additionally,

there are special section names that can be used to place just a portion of a file in a different

section (see examples).

The following figure illustrates the relationship between the MMU and the scatter load.

9

Memory Protection

Relationship between MMU and Scatter Load

SYS RO
USR NA

SYS RO
USR RO

SYS RW
USR NA

SYS RW
USR RO

SYS RW
USR RW

system code / const user code/constsystem data / zi user data / ziswi numbers, etc.

RAM

Image

Object code +
scatter load file

Linker

MMU

CPU

Page tables

0xffffffff0x00000000 0x18000000 0x18100000

10

Context Switches

BRIDLE requires that a given thread of execution be able to switch between User and

Supervisor modes.

Supervisor-to-User mode

Switching from Supervisor mode to User mode is safe and relatively simple. On most

hardware, this simply involves setting some bits in a register. In BRIDLE phase I, this action is

performed during the dispatching of callbacks, so all events are processed in User mode. The

next figure illustrates the transition from Supervisor to User mode, and the reverse during

function return.

Supervisor-to-User mode context switch

11

Context Switches

User-to-Supervisor mode

Changing from User mode to Supervisor mode is potentially unsafe and definitely more

involved. The safety issues have been discussed in previous sections. The actual mechanism

for this transition depends on the hardware, but almost always involves a software interrupt

(SWI) whose handler is installed and executed in Supervisor mode. This may be referred to

as a "system call", and is illustrated in the following figure

.User-to-Supervisor mode context switch

12

Boundaries

BRIDLE has introduced a new boundary to separate the portions of BREW running in User

mode from those running in Supervisor mode. Where this boundary is made depends on

individual interfaces, and this section attempts to aid BREW interface developers in

establishing this boundary in their interfaces. The interfaces can essentially be categorized

into 4 major types, as follows:

• Type I: BREW interfaces that have AEE and OEM layers, but the OEM layers do not

require system services (e.g. AEEDB/OEMDB). These interfaces would not require

BRIDLE.

• Type II: BREW interfaces that are entirely implemented in OEM (e.g. OEMPosDet)

and do access the system. The best way to convert these interfaces to be BRIDLE

compliant would be to separate the functions into device independent BREW

interface functions (e.g. AEEPosDet) and the device dependent part that requires

system services.

• Type III: AEE libraries that access the system via OEM interfaces (e.g

AEENet/OEMSock). For these, the protection may be applied at the AEE-OEM

boundary.

• Type IV: Interfaces that are implemented as pure AEE layers and do not access the

system (e.g. OEMHeap). These interfaces need not be BRIDLEd and can run

entirely in User mode.

The following figure illustrates how BRIDLEization would affect the 4 types of BREW interfaces

described above. The diagram on the top illustrates the 4 types of interfaces as they exist

today, and the diagram below represents the interfaces after BRIDLE.

13

Boundaries

Four types of interfaces, before and after BRIDLE

Type II Interfaces

For Type II interfaces, there will be two variations on creating the new AEE layer. In both cases,

the end result is a thin OEM layer.

Thin AEE

In the case where the existing OEM layer is relatively thin (doing not much more than calling

OS functions), the new AEE layer can be extremely thin. For example, it could be a simple

header file that aliases the new AEE function to be the packbridle OEM function, as shown

below:

#define AEEFoo_Openpackbridle_OEMFoo_Open

Then code that used to call OEMFoo_Open() can be changed to simply call AEEFoo_Open().

AEE

OEM

OEM

AEE

OEM

OS

Type I Type II Type III Type IV

Supervisor Mode

AEE

OEM

OEM

AEE

OEM

OS

Type I Type II Type III Type IV

BREW Library

OEM Sources

OS Sources

BRIDLE Library

Bridle
AEE

Bridle

Supervisor Mode

User ModeAEE

AEE

14

Boundaries

Thick AEE

In the case where the OEM layer is relatively complex, e.g. implementing a BREW API, the

strategy will be a bit different. In this case, the philosophy is to move as much code to user

space as possible.

One way to do this would be to copy the contents of the OEM files to the new AEE files, and

then create a thin OEM layer (without vtables) that does not much more than call OS functions.

OEM API Design

Whether you are creating a new OEM API (for example, Type II), or BRIDLEing an existing

Type III interface, there are some BRIDLE-specific considerations that may impact the OEM

API definition:

• Do not pass structs as arguments. The SWI mechanism assumes that all arguments

can fit in a 32-bit word, so pass a pointer to struct instead.

• Do not allocate memory in Supervisor mode and return it to User mode, because

User mode will not be able to access the memory. Instead, allocate the memory in

User mode and pass the pointer down into Supervisor mode. When in supervisor

mode, use the BRIDLE_COPY_*_USER macros to access the user memory.

15

BRIDLE_SWI

BRIDLE_SWI is the function used to perform a User to Supervisor mode context switch. The

specific implementation is platform dependent, but it is typically a combination of an assembly

routine that invokes a software interrupt, and the corresponding interrupt handler (SWI

Handler).

For Arm7 and ARM9, BRIDLE_SWI utilizes registers to pass arguments, but it only has four

registers for this purpose. Therefore, any system call that requires more than four arguments

needs to be rewritten to only use four arguments. This is achieved by packing arguments four

and later into a struct, and passing the address of the struct as the fourth argument.

As an example, consider IFILE_Read(), which is part of a Type III interface. Where

AEEFile_Read() used to directly call OEMFS_Read(), there now needs to be a BRIDLE

boundary inserted. AEEFile_Read() will call packbridle_OEMFS_Read(), which will pack the

arguments and traverse the boundary via BRIDLE_SWI. On the other side, the SWI Handler

will pass the registers to unpackbridle_OEMFS_Read(), which will unpack and validate the

arguments before calling OEMFS_Read().

16

BRIDLE_SWI

Using BRIDLE_SWI to traverse the BRIDLE boundary

Supervisor mode

User mode

packbridle_OEMFS_Read()

OEMFS_Read()

IFILE_Read()

AEEFile_Read()

BRIDLE_SWI

SWI Handler

unpackbridle_OEMFS_Read()

17

BRIDLE Macros

The BRIDLE macros are defined in AEEBridle.h. They can be used to facilitate making the

context switch between user and supervisor modes. In practice, you will never need to directly

invoke BRIDLE_SWI.

BRIDLEX_*()

//
// BRIDLEX_* macros - generates both PACKBRIDLE and UNPACKBRIDLE inlines
//
// BRIDLEX_RET(rt,f,t1,v1,n1,...,tn,vn,nn,i,n)
// X - number of paramters to deal with (e.g. 4)
// rt - return type (e.g. int32)
// f - system function (e.g. OEMSocket_Open)
// t1 - type of first arg (e.g. byte)
// v1 - first arg verification function (e.g. BRIDLE_CHECK_NONE)
// n1 - first number of bytes to verify (e.g. 0)
// ...
// tn - type of nth arg (e.g. uint16*)
// vn - nth arg verification function (e.g. BRIDLE_CHECK_WRITEACCESS)
// nn - nth number of bytes to verify (e.g. sizeof(uint16))
// i - swi number (e.g. bridle_sock_swi)
// n - swi index (e.g. BRIDLE_SOCK_SOCKET)
//
// BRIDLEX_VOID(f,t1,...,tn,i,n)
// X - number of paramters to deal with (e.g. 4)
// f - system function (e.g. OEMFS_RegRmtAccessChk)
// t1 - type of first arg (e.g. byte)
// v1 - first arg verification function (e.g. BRIDLE_CHECK_NONE)
// n1 - first number of bytes to verify (e.g. 0)
// ...
// tn - type of nth arg (e.g. uint16*)
// vn - nth arg verification function (e.g. BRIDLE_CHECK_WRITEACCESS)
// nn - nth number of bytes to verify (e.g. sizeof(uint16))
// i - swi number (e.g. bridle_sock_swi)
// n - swi index (e.g. BRIDLE_SOCK_FORCE_DORMANCY)
//
#define BRIDLE0_RET(rt,f,i,n) \
PACKBRIDLE0_RET(rt,f,i,n) \
UNPACKBRIDLE0_RET(rt,f,i,n)

#define BRIDLE0_VOID(f,i,n) \
PACKBRIDLE0_VOID(f,i,n) \

18

BRIDLE Macros

UNPACKBRIDLE0_VOID(f,i,n)

#define BRIDLE1_RET(rt,f,t1,v1,n1,i,n) \
PACKBRIDLE1_RET(rt,f,t1,i,n) \
UNPACKBRIDLE1_RET(rt,f,t1,v1,n1,i,n)

...

#define
BRIDLE13_RET(rt,f,t1,v1,n1,t2,v2,n2,t3,v3,n3,t4,v4,n4,t5,v5,n5,t6,v6,n6,t7,
v7,n7,t8,v8,n8,t9,v9,n9,t10,v10,n10,t11,v11,n11,t12,v12,n12,t13,v13,n13,i,n
) \
PACKBRIDLE13_RET(rt,f,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,i,n) \

UNPACKBRIDLE13_RET(rt,f,t1,v1,n1,t2,v2,n2,t3,v3,n3,t4,v4,n4,t5,v5,n5,t6,v6,

n6,t7,v7,n7,t8,v8,n8,t9,v9,n9,t10,v10,n10,t11,v11,n11,t12,v12,n12,t13,v13,n

13,i,n)

PACKBRIDLEX_*()

//
// PACKBRIDLEX_* macros - generates an inline for the user mode invocation
of the SWI
//
// PACKBRIDLEX_RET(rt,f,t1,...,tn,i,n)
// X - number of paramters to deal with (e.g. 4)
// rt - return type (e.g. int32)
// f - system function (e.g. OEMSocket_Open)
// t1 - type of first arg (e.g. byte)
// ...
// tn - type of nth arg (e.g. uint16*)
// i - swi number (e.g. bridle_sock_swi)
// n - swi index (e.g. BRIDLE_SOCK_SOCKET)
//
// PACKBRIDLEX_VOID(f,t1,...,tn,i,n)
// X - number of paramters to deal with (e.g. 4)
// f - system function (e.g. OEMFS_RegRmtAccessChk)
// t1 - type of first arg (e.g. byte)
// ...
// tn - type of nth arg (e.g. uint16*)
// i - swi number (e.g. bridle_sock_swi)
// n - swi index (e.g. BRIDLE_SOCK_FORCE_DORMANCY)
//
#define PACKBRIDLE0_RET(rt,f,i,n) \
static __inline rt packbridle_##f(void) \
{ \
 return (rt)BRIDLE_SWI(0,0,0,0,BRIDLE_MAKE_SWI(i,n)); \
}
#define PACKBRIDLE0_VOID(rt,f,i,n) \
static __inline void packbridle_##f(void) \
{ \

19

BRIDLE Macros

 (void)BRIDLE_SWI(0,0,0,0,BRIDLE_MAKE_SWI(i,n)); \
}
#define PACKBRIDLE1_RET(rt,f,t1,i,n) \
static __inline rt packbridle_##f(t1 a1) \
{ \
 return (rt)BRIDLE_SWI((uint32)a1,0,0,0,BRIDLE_MAKE_SWI(i,n)); \
}

...

#define
PACKBRIDLE13_RET(rt,f,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,i,n) \
static __inline rt packbridle_##f(t1 a1,t2 a2,t3 a3,t4 a4,t5 a5,t6 a6,t7
a7,t8 a8,t9 a9,t10 a10,t11 a11,t12 a12,t13 a13) \
{ \
 return
(rt)packbridle(BRIDLE_MAKE_SWI(i,n),(uint32)a1,(uint32)a2,(uint32)a3,10,(ui
nt32)a4,(uint32)a5,(uint32)a6,(uint32)a7,(uint32)a8,(uint32)a9,(uint32)a10,
(uint32)a11,(uint32)a12,(uint32)a13); \

}

packbridle() inline

PACKBRIDLE4_*() and above use a helper inline to pack the extra parameters into one, since only
four arguments are passed through the SWI. There should be no need to call this directly.

// useful for packing more than four parameters into four parameters to
traverse the SWI
static __inline uint32 packbridle(uint32 swi, uint32 a1, uint32 a2, uint32
a3, int x, ...)
{
 va_list ap;
 int i;
 uint32 pu[10];

 va_start(ap, x);
 for (i = 0; i < x; ++i) {
 pu[i] = va_arg(ap, uint32);
 }
 va_end(ap);

 return BRIDLE_SWI(a1, a2, a3, (uint32)pu, swi);

}

20

BRIDLE Macros

UNPACKBRIDLEX_*()

//
// UNPACKBRIDLEX_* macros - generates an inline for the SWI to invoke
// Note that there are very few cases in which these would need to
// be used by themselves - instead use the BRIDLEX_* macros below.
//
// UNPACKBRIDLEX_RET(rt,f,t1,v1,n1,...,tn,vn,nn,i,n)
// X - number of paramters to deal with (e.g. 4)
// rt - return type (e.g. int32)
// f - system function (e.g. OEMSocket_Open)
// t1 - type of first arg (e.g. byte)
// v1 - first arg verification function (e.g. BRIDLE_CHECK_NOACCESS)
// n1 - first number of bytes to verify (e.g. 0)
// ...
// tn - type of nth arg (e.g. uint16*)
// vn - nth arg verification function (e.g. BRIDLE_CHECK_WRITEACCESS)
// nn - nth number of bytes to verify (e.g. sizeof(uint16))
// i - swi number (e.g. bridle_sock_swi)
// n - swi index (e.g. BRIDLE_SOCK_SOCKET)
//
// UNPACKBRIDLEX_VOID(f,t1,...,tn,i,n)
// X - number of paramters to deal with (e.g. 4)
// f - system function (e.g. OEMFS_RegRmtAccessChk)
// t1 - type of first arg (e.g. byte)
// v1 - first arg verification function (e.g. BRIDLE_CHECK_NOACCESS)
// n1 - first number of bytes to verify (e.g. 0)
// ...
// tn - type of nth arg (e.g. uint16*)
// vn - nth arg verification function (e.g. BRIDLE_CHECK_WRITEACCESS)
// nn - nth number of bytes to verify (e.g. sizeof(uint16))
// i - swi number (e.g. bridle_sock_swi)
// n - swi index (e.g. BRIDLE_SOCK_FORCE_DORMANCY)
//
#define UNPACKBRIDLE0_RET(rt,f,i,n) \
static __inline uint32 unpackbridle_##f(uint32 swi,uint32 a1,uint32
a2,uint32 a3,uint32 a4) \
{ \
 return (uint32)f(); \
}
#define UNPACKBRIDLE0_VOID(f,i,n) \
static __inline uint32 unpackbridle_##f(uint32 swi,uint32 a1,uint32
a2,uint32 a3,uint32 a4) \
{ \
 f(); \
 return 0; \
}
#define UNPACKBRIDLE1_RET(rt,f,t1,v1,n1,i,n) \
static __inline uint32 unpackbridle_##f(uint32 swi,uint32 a1,uint32
a2,uint32 a3,uint32 a4) \
{ \
 v1(swi,(t1)UNPACKBRIDLE_PARAM_1,n1); \
 return (uint32)f((t1)UNPACKBRIDLE_PARAM_1); \
}

21

BRIDLE Macros

...

#define
UNPACKBRIDLE13_RET(rt,f,t1,v1,n1,t2,v2,n2,t3,v3,n3,t4,v4,n4,t5,v5,n5,t6,v6,
n6,t7,v7,n7,t8,v8,n8,t9,v9,n9,t10,v10,n10,t11,v11,n11,t12,v12,n12,t13,v13,n
13,i,n) \
static __inline uint32 unpackbridle_##f(uint32 swi,uint32 a1,uint32
a2,uint32 a3,uint32 a4) \
{ \
 v1(swi,(t1)UNPACKBRIDLE_PARAM_1,n1); \
 v2(swi,(t2)UNPACKBRIDLE_PARAM_2,n2); \
 v3(swi,(t3)UNPACKBRIDLE_PARAM_3,n3); \
 v4(swi,(t4)UNPACKBRIDLE_PARAM_4,n4); \
 v5(swi,(t5)UNPACKBRIDLE_PARAM_5,n5); \
 v6(swi,(t6)UNPACKBRIDLE_PARAM_6,n6); \
 v7(swi,(t7)UNPACKBRIDLE_PARAM_7,n7); \
 v8(swi,(t8)UNPACKBRIDLE_PARAM_8,n8); \
 v9(swi,(t9)UNPACKBRIDLE_PARAM_9,n9); \
 v10(swi,(t10)UNPACKBRIDLE_PARAM_10,n10); \
 v11(swi,(t11)UNPACKBRIDLE_PARAM_11,n11); \
 v12(swi,(t12)UNPACKBRIDLE_PARAM_12,n12); \
 v13(swi,(t13)UNPACKBRIDLE_PARAM_13,n13); \
 return (uint32)f((t1)UNPACKBRIDLE_PARAM_1, \

(t2)UNPACKBRIDLE_PARAM_2, \
(t3)UNPACKBRIDLE_PARAM_3, \
(t4)UNPACKBRIDLE_PARAM_4, \
(t5)UNPACKBRIDLE_PARAM_5, \
(t6)UNPACKBRIDLE_PARAM_6, \ (t7)UNPACKBRIDLE_PARAM_7, \
(t8)UNPACKBRIDLE_PARAM_8, \
(t9)UNPACKBRIDLE_PARAM_9, \ (t10)UNPACKBRIDLE_PARAM_10,
\
(t11)UNPACKBRIDLE_PARAM_11, \
(t12)UNPACKBRIDLE_PARAM_12, \

 (t13)UNPACKBRIDLE_PARAM_13); \
}

UNPACKBRIDLE_PARAM_X

//
// UNPACKBRIDLE_PARAM_X macros - used for accessing packed parameters
// (also useful for validating a pointer whose length is specified by an-
other parameter)
#define UNPACKBRIDLE_PARAM_1 (a1)
#define UNPACKBRIDLE_PARAM_2 (a2)
#define UNPACKBRIDLE_PARAM_3 (a3)
#define UNPACKBRIDLE_PARAM_4 (((uint32*)a4)[0])
#define UNPACKBRIDLE_PARAM_5 (((uint32*)a4)[1])
#define UNPACKBRIDLE_PARAM_6 (((uint32*)a4)[2])
#define UNPACKBRIDLE_PARAM_7 (((uint32*)a4)[3])
#define UNPACKBRIDLE_PARAM_8 (((uint32*)a4)[4])
#define UNPACKBRIDLE_PARAM_9 (((uint32*)a4)[5])

22

BRIDLE Macros

#define UNPACKBRIDLE_PARAM_10 (((uint32*)a4)[6])
#define UNPACKBRIDLE_PARAM_11 (((uint32*)a4)[7])
#define UNPACKBRIDLE_PARAM_12 (((uint32*)a4)[8])
#define UNPACKBRIDLE_PARAM_13 (((uint32*)a4)[9])

BRIDLE_CHECK_*

These macros are used in unpackbridle_*() to validate memory (i.e. that the memory range

falls entirely within user space). Note that they do not return in the case of a failure. The swi

parameter is used to disable checking in the case that the BRIDLE call was entered from

supervisor mode.

• Verify that the pointer can not be accessed in user mode (not too useful right now):

BRIDLE_CHECK_NOACCESS(swi,p,len)

• Verify that the pointer can be read in user mode:

BRIDLE_CHECK_READACCESS(swi,p,len)

• Verify that the pointer can be written in user mode:

BRIDLE_CHECK_WRITEACCESS(swi,p,len)

• Verify (only if not-null) that the pointer (non-zero) can be read in user mode:

BRIDLE_CHECK_READACCESS_NZ(swi,p,len)

• Verify (only if non-null) that the pointer (non-zero) can be written in user mode:

BRIDLE_CHECK_WRITEACCESS_NZ(swi,p,len)

• Do not verify (e.g. pointer not used, not a pointer):

BRIDLE_CHECK_NONE(swi,p,len)

• Verify an IOCTL from AEEIOCTL.h:

BRIDLE_CHECK_IOCTL(swi,p,len)

• Verify a string for read access (uses safe strlen):

BRIDLE_CHECK_READ_STRING_ACCESS(swi,p,unused)

• Verify an exact value (e.g. callback function pointer):

BRIDLE_CHECK_VALUE(swi,v,V)

• Verify that an AEEHandle (h) refers to a valid entry in the AEEInstanceList (pIL), and

if so converts it to the corresponding OEMINSTANCE:

BRIDLE_CHECK_HANDLE(swi,h,pIL)

23

BRIDLE Macros

• Verify that an hAEEkCB (kcb) refers to a valid handle, and if so converts it to the

corresponding AEECallback*:

BRIDLE_CHECK_AEEKCB(swi,kcb,unused)

See the examples for usage.

BRIDLE_COPY_*_USER

These macros are used to copy memory to and from user space; for example, a callback from

supervisor mode that needs to copy data to a user mode buffer. For now, the copies are direct,

but they will involve virtual memory translations in Bridle II.

• Verify the user mode pointer (to) for write and copy from supervisor mode:

BRIDLE_COPY_TO_USER(to, from, len)

• Verify the user mode pointer (from) for read and copy to supervisor mode:

BRIDLE_COPY_FROM_USER(to, from, len)

• If the pointers have already been validated, there are versions that do not verify:

COPY_TO_USER(to, from, len)

• COPY_FROM_USER(to, from, len)

BRIDLE_SUBSYS_*

These macros provide facilities to build a typical BRIDLE subsystem. The key facility of

BRIDLE_SUBSYS_* macros is a naming convention that can help eliminate errors caused by

copy-and-paste code editing. BRIDLE has no type checking for the SWI handlers of each

subsystem, so things like initialization of a subsystem’s SWI handler vector table is error-

prone. Since the subsystem’s SWI number and the subsystem’s initialization function are in

the global namespace, the BRIDLE_SUBSYS_* macros provide a naming convention that can

keep the names from colliding.

Among the conventions enforced are:

• The subsystem’s SWI number is named as g_bridle_<subsystem>_subsys_no

24

BRIDLE Macros

• Array indices used for accessing the subsystem’s SWI handler table are named

BRIDLE_<subsystem>_<function>

• The size of the subsystem’s SWI handler table is BRIDLE_<subsystem>_COUNT

With these conventions in place, writing a typical BRIDLE subsystem is a matter of a few

declarations, as shown below. See Examples for more information.

// construct a constant name that's subsystem+function specific, to be stuck
// in an enum { };, used for initializing the subsystem's SWI handler table,
// and naming sys calls
#define BRIDLE_SUBSYS_HANDLER_IDX(name, func) BRIDLE_##name##_##func

// declares a subsystem-specific number name
#define BRIDLE_SUBSYS_NO(name) g_bridle_##name##_subsys_no

// names the subsystem's handler table
#define BRIDLE_SUBSYS_HANDLER_TABLE(name) g_##name##_handlers

// declares name the subsystem's SWI handler table
#define BRIDLE_DECLARE_SUBSYS_HANDLER_TABLE(name) \
 static PFNSWIHANDLER
BRIDLE_SUBSYS_HANDLER_TABLE(name)[BRIDLE_##name##_COUNT]

// the default implementation of the subsystem's top-level SWI handler would
look like this
#define BRIDLE_DECLARE_GENERIC_SUBSYS_SWIHANDLER(name) \
static uint32 bridle_##name##_swihandler(uint32 swi, uint32 a1, uint32 a2,
uint32 a3, uint32 a4)\
{\
 return bridle_generic_swihandler(swi, a1, a2, a3, a4, \
ARRAY_SIZE(BRIDLE_SUBSYS_HANDLER_TABLE(name)), \
 BRIDLE_SUBSYS_HANDLER_TABLE(name));\
}

// the call back to bridle to register your subsystem that uses BRIDLE_SUBSYS_
naming
#define BRIDLE_REGISTER_SUBSYS(name) \
 bridle_RegisterSubSystem(bridle_##name##_swihandler,
&BRIDLE_SUBSYS_NO(name))

// initializes one entry in the subsystems SWI handler table
#define BRIDLE_INIT_SUBSYS_HANDLER_TABLE(name, func) \
 BRIDLE_SUBSYS_HANDLER_TABLE(name)[BRIDLE_SUBSYS_HANDLER_IDX(name,func)] =
unpackbridle_##func;〈

25

Examples

OEMFoo.h

To start this example, assume that OEMFoo provides some simple methods. More complex

methods will be added later in the example.

extern OEMINSTANCE OEMFoo_Open(const char name[]);
extern int OEMFoo_Read(OEMINSTANCE f, char buf[], int size);
extern int OEMFoo_Write(OEMINSTANCE f, const char buf[], int size);
extern void OEMFoo_Close(OEMINSTANCE f);

BRIDLEInit.h (or BRIDLEInit_OEM.h)

Add a new prototype:

extern int bridle_foo_RegisterSubSystem (void *po);

Note that some device builds (e.g. 6050/6100) may have their own copy of BRIDLEInit_OEM.h

that should be modified as needed.

BRIDLEInit.c (or BRIDLEInit_OEM.c)

Bridle initialization takes place before AEEInit(). In order to register the module SWI handlers,

add an entry to gBridleInit[] (or gOEMBridleInit[]), which will be iterated over during Bridle

initialization. Use feature macros if appropriate.

...
static const PFNBRIDLEINIT gBridleInit[] = {
...
#ifdef FEATURE_BREW_FOO
 bridle_foo_RegisterSubSystem,
#endif // FEATURE_BREW_FOO
...
};

26

Examples

Note that some device builds (e.g. 6050/6100) may have their own copy of BRIDLEInit_OEM.c

that should be modified as needed.

bridle_foo.c

At a minimum, the unpack file will need to initialize the module SWI handlers. Since this is a

new file, it will need to be added to the appropriate part of the build system (e.g. aeebridle.min).

#include ìBRIDLEInit.hî
#include ìbridle_foo.hî

The SWI number needs to be user read-only, which is achieved via a pragma that tells the

linker to use a different rule in the scatter load file:

#if __ARMCC_VERSION >= 120000 // ADS 1.2
#pragma arm section zidata = "bridle_svc_zi_usr_ro"
#endif // __ARMCC_VERSION >= 120000 // ADS 1.2
uint32 BRIDLE_SUBSYS_NO(foo);
#if __ARMCC_VERSION >= 120000 // ADS 1.2
#pragma arm section zidata
#endif // __ARMCC_VERSION >= 120000 // ADS 1.2

// declare/define the table of function pointers
BRIDLE_DECLARE_SUBSYS_HANDLER_TABLE(foo);

// this module employs the generic swi handling logic
BRIDLE_DECLARE_GENERIC_SUBSYS_SWIHANDLER(foo)

int bridle_foo_RegisterSubSystem(void *po)
{
 BRIDLE_INIT_SUBSYS_HANDLER_TABLE(foo, OEMFoo_Open);
 BRIDLE_INIT_SUBSYS_HANDLER_TABLE(foo, OEMFoo_Read);
 BRIDLE_INIT_SUBSYS_HANDLER_TABLE(foo, OEMFoo_Write);
 BRIDLE_INIT_SUBSYS_HANDLER_TABLE(foo, OEMFoo_Close);

 return BRIDLE_REGISTER_SUBSYS(foo);
}

bridle_foo.h
#ifndef _BRIDLE_FOO_H_
#define _BRIDLE_FOO_H_

#include "OEMFoo.h"
#include "AEEBridle.h"

27

Examples

Enumerate the methods for the module SWI handler:

enum {
 BRIDLE_SUBSYS_HANDLER_IDX(foo, OEMFoo_Open),
 BRIDLE_SUBSYS_HANDLER_IDX(foo, OEMFoo_Read),
 BRIDLE_SUBSYS_HANDLER_IDX(foo, OEMFoo_Write),
 BRIDLE_SUBSYS_HANDLER_IDX(foo, OEMFoo_Close),
 BRIDLE_foo_COUNT
};

extern uint32 RIDLE_SUBSYS_NO(foo);

Declare the packbridle_* and unpackbridle_* inline functions via the BRIDLE macros:

BRIDLE_SUBSYS_1_RET(foo, OEMINSTANCE, OEMFoo_Open,
 const char*, BRIDLE_CHECK_READ_STRING_ACCESS, 0)

BRIDLE_SUBSYS_3_RET(foo, int, OEMFoo_Read,
OEMINSTANCE, BRIDLE_CHECK_NONE, 0,
char*, BRIDLE_CHECK_WRITEACCESS, UNPACKBRIDLE_PARAM_3,
int, BRIDLE_CHECK_NONE, 0)

BRIDLE_SUBSYS_3_RET(foo, int, OEMFoo_Write,
OEMINSTANCE, BRIDLE_CHECK_NONE, 0,
const char*, BRIDLE_CHECK_READACCESS, UNPACKBRIDLE_PARAM_3,

 int, BRIDLE_CHECK_NONE, 0)

BRIDLE_SUBSYS_1_VOID(foo, OEMFoo_Close,
 OEMINSTANCE, BRIDLE_CHECK_NONE, 0)

#endif // _BRIDLE_FOO_H_

AEEFoo.c
#include ìbridle_foo.hî

Replace prior OEMFoo_*() calls with the packbridle_*() variants. These will instantiate

the corresponding inline functions from bridle_foo.h.

...
 f = packbridle_OEMFoo_Open(ìfoobarî);
...
 n = packbridle_OEMFoo_Read(f, buf, sizeof(buf));
...
 m = packbridle_OEMFoo_Write(f, buf, n);
...
 packbridle_OEMFoo_Close(f);

28

Examples

...

Complex parameter checking

Consider the following function which takes an array of structures that in turn contain pointers

that need to be validated:

typedef struct {
 char* buf;
 int size;
} IOVec;

extern int OEMFoo_ReadV(OEMINSTANCE f, IOVec bufs[], int count);

The BRIDLE_CHECK_*ACCESS macros are limited to checking a single pointer and length.

In this case, declare only the PACKBRIDLE macro in bridle_foo.h:

PACKBRIDLE_SUBSYS_3_RET(foo, int, OEMFoo_ReadV,
 OEMINSTANCE f,
 IOVec*,int)

The unpackbridle function will need to be written by hand in unpackbridle_foo.c:

static uint32 unpackbridle_OEMFoo_ReadV(uint32 swi, uint32 a1, uint32 a2,
uint32 a3, uint32 a4)
{
 OEMINSTANCE f = (OEMINSTANCE)UNPACKBRIDLE_PARAM_1;
 IOVec* bufs = (IOVec*)UNPACKBRIDLE_PARAM_2;
 int count = (int)UNPACKBRIDLE_PARAM_3;
 int i;

 BRIDLE_CHECK_READACCESS(swi, bufs, count*sizeof(IOVec));
 for (i = 0; i < count; ++i) {
 BRIDLE_CHECK_WRITEACCESS(swi, bufs[i].buf, bufs[i].size);
 }

 return (uint32)OEMFoo_ReadV(f, bufs, count);
}

29

Examples

Callbacks

Static Callbacks

Since OEMFoo.c will be operating in SVC mode, is it OK to utilize a static callback in

AEEFoo.c? It is safe, if certain guidelines are followed:

• The callback function pointer needs to be validated, such that arbitrary user code is

not executed in system mode. This usually involves converting a static function to

extern, such that the symbol will be available to OEMFoo.c. The callback itself

cannot be dynamic.

• The callback function can copy data from supervisor mode to user mode.

Additionally, if the data sink is dynamically allocated, it must be validated before the

copy.

• The callback may post a resume (which will occur in user mode).

• No other operations may take place in the callback.

As an example, suppose that AEEFoo registers a callback with OEMFoo:

typedef struct {
 char* buf;
 int size;
} FooEvent;

typedef void (PFNFOO*)(void* pUser, const FooEvent* pEvent);

extern void OEMFoo_Register(OEMINSTANCE f, PFNFOO cb, void* pUser);

This function would be BRIDLEd as follows:

BRIDLE_SUBSYS_3_VOID(foo, OEMFoo_Register,
 OEMINSTANCE f, BRIDLE_CHECK_NONE, 0,
 PFNFOO, BRIDLE_CHECK_VALUE, AEEFoo_EventCB,
 void*, BRIDLE_CHECK_READACCESS, sizeof(AEEFoo))

The callback would be registered like this:

 CALLBACK_Init(&me->cbEvent, AEEFoo_HandleEvent, me);
 backbridle_OEMFoo_Register(me->f, AEEFoo_EventCB, me);

The callback should look something like this:

30

Examples

void AEEFoo_EventCB(void* pUser, const FooEvent* pEvent)
{
 AEEFoo* me = (AEEFoo*)pUser;

 BRIDLE_COPY_TO_USER(me->buf, pEvent->buf, pEvent->size);
 AEE_ResumeCallback(&me->cbEvent, 0);
}

AEECallbacks

Is it safe to pass an AEECallback* across the BRIDLE boundary? No, this is unsafe since the

contents of the AEECallback (e.g. pNext) may be modified at any time by user code.

Since the AEECallback mechanism is a convenient one, a facility has been developed to make

use of them across a BRIDLE boundary: AEEkCB.

Let’s consider a readable method:

extern void OEMFoo_Readable(OEMINSTANCE f, AEECallback* pcb);

On the USR side, change the AEECallback member of the instance data to hAEEkCB, and

change CALLBACK_Init() to AEEkCB_Create(). Since this handle now refers to a dynamically

allocated (SVC) AEECallback, be sure to AEEkCB_Delete() it when finished:

struct {
 ...
 hAEEkCB kcb;
 ...
} AEEFoo;
...
static void AEEFoo_ReadableCB(void* pv);

int AEEFoo_Init(void)
{
 int nErr;

 nErr = AEEkCB_Create(&me->kcb, AEEFoo_ReadableCB, me);
 if (SUCCESS != nErr) {
 return nErr;
 }
 ...
}

int AEEFoo_Delete(void)
{
 ...
 AEEkCB_Delete(&me->kcb);

31

Examples

}

In bridle_foo.h, the new macro will look like this:

BRIDLE_SUBSYS_2_VOID(foo, OEMFoo_Readable,
 OEMINSTANCE, BRIDLE_CHECK_NONE, 0,
 AEECallback*, BRIDLE_CHECK_AEEKCB, 4)

In AEEFoo.c, it is called by passing hAEEkCB by value, instead of the AEECallback by

reference:

 packbridle_OEMFoo_Readable(me->f, me->kcb);

BRIDLE_CHECK_AEEKCB will first validate the handle, and then call OEMFoo_Readable()

with the underlying SVC AEECallback, which OEMFoo.c can use just like before, with the

exception that the resume now needs to be done in supervisor mode:

 AEE_SVC_RESUME(pcb,0);

Handles

So far it has been assumed that the OEMINSTANCE returned from OEMFoo_Open() is a

small integer which is validated by the OEMFoo_*() calls. What if it is instead a pointer from

the system heap? This is OK from an access point of view, as AEEFoo.c never tries to

dereference the pointer, but how does OEMFoo_*() ensure that the pointer is one that was

returned from OEMFoo_Open()?

The solution is that the OEMINSTANCE would be converted to a small integer handle in

unpackbridle_OEMFoo_Open(), and from a small integer handle to the OEMINSTANCE in the

other unpackbridle_OEMFoo_*() functions.

In this case, bridle_foo.h would be changed such that the macro for OEMFoo_Open and

OEMFoo_Close would change from a BRIDLE1_RET to PACKBRIDLE1_RET, and the

validation of the first parameter in the other macros would change from

BRIDLE_CHECK_NONE to BRIDLE_CHECK_HANDLE:

extern AEEInstanceList gFooInstanceList;

PACKBRIDLE_SUBSYS_1_RET(foo, OEMINSTANCE, OEMFoo_Open,
 const char*)

BRIDLE_SUBSYS_3_RET(foo, int, OEMFoo_Read,

32

Examples

 OEMINSTANCE, BRIDLE_CHECK_HANDLE, &gFooInstanceList,
 char*, BRIDLE_CHECK_WRITEACCESS, UNPACKBRIDLE_PARAM_3,
 int, BRIDLE_CHECK_NONE, 0)

PACKBRIDLE_SUBSYS_1_VOID(foo, OEMFoo_Close,
 OEMINSTANCE)

...

In bridle_foo.c, the instance list would be declared and unpackbridle_OEMFoo_Open() and

unpackbridle_OEMFoo_Close() would be written as follows:

static AEEInstance gpInstances[16];
AEEInstanceList gFooInstanceList = { gpInstances, sizeof(gpInstances) /
sizeof(gpInstances[0]), 0 };

static uint32 unpackbridle_OEMFoo_Open(uint32 swi, uint32 a1, uint32 a2,
uint32 a3, uint32 a4)
{
 const char* szName = (const char*)UNPACKBRIDLE_PARAM_1;
 OEMINSTANCE f;
 uint32 h;
 boolean bRet;

 BRIDLE_CHECK_READ_STRING_ACCESS(swi, szName, 0);

 // create the instance
 f = OEMFoo_Open(szName);
 if ((OEMINSTANCE)0 == f) {
 return 0;
 }

 // OEMINSTANCE is a pointer from the system heap, which we really
 // don't want to pass to user mode, as they will be hard to validate
 // when they come back to system mode. So, we convert the pointer to
 // an integer "handle" that is easier to validate without any serious
 // performance penalty in the nominal case.
 bRet = AEEHandle_To(&gFooInstanceList, f, &h);
 if (FALSE == bRet) {
 (void)OEMFoo_Close(f);
 return 0;
 }

 return h;
}

static uint32 unpackbridle_OEMFoo_Close(uint32 swi, uint32 a1, uint32 a2,
uint32 a3, uint32 a4)
{
 uint32 h = (uint32)UNPACKBRIDLE_PARAM_1;
 OEMINSTANCE f = (OEMINSTANCE)h;

33

Examples

 BRIDLE_CHECK_HANDLE(swi, f, &gFooInstanceList);

 OEMFoo_Close(f);

 (void)AEEHandle_Clear(&gFooInstanceList, h);

 return 0;
}

Scatter Load

Since OEMFoo.c contains supervisor mode data (e.g. gpInstances), we need the data to

end up in the supervisor portion of the image. It also makes debugging easier if the code is

also in the supervisor region, so any data abort will happen at the point of entry, and not further

down the stack when data is actually accessed.

Edit the appropriate scatter load file (e.g. m6100b_ram.scl), using OEMSock.o as a template.

Wherever you find an entry for OEMSock.o, duplicate the line and change ìSockî to ìFooî (if

you don’t see OEMSock.o, your build is not yet BRIDLEd). For example, the following line:

 OEMSock.o (+RW)

Will become two lines:

 OEMSock.o (+RW)

 OEMFoo.o (+RW)

There are typically three instances: code (+RO), initialized data (+RW), and uninitialized data

(+ZI).

Also, if bridle_foo.c is not part of AEEBridle.lib (e.g. static extension), entries will need to be

created for bridle_foo.o, as well.

34

Other Considerations

Supervisor mode callback mechanisms

Supervisor mode code can not use the standard callback mechanisms for its own uses, as the

callback will occur in user mode and a data abort will result.

Supervisor mode variants of timers and resumes have been created, and have exactly the

same semantics except that the callback will execute in supervisor mode.

Supervisor mode timers:

extern int AEE_SetSvcTimerCallback(int32 nMSecs, AEECallback* pcb);

Supervisor mode resumes:

extern void AEE_ResumeSvcCallback(AEECallback* pcb);

Supervisor mode system callbacks:

extern void AEE_RegisterSvcSystemCallback(AEECallback* pcb, int nType);
extern boolean AEE_IssueSvcSystemCallback(int nType);

Locking interrupts

User mode is prohibited from locking interrupts (e.g. INTLOCK()).

If interrupts must truly be locked (e.g. vocoder), then this must be done in supervisor mode,

and unlocked before returning to user mode.

Locking interrupts has traditionally been used for making data access thread safe. In these

cases, use AEECriticalSection (for static data) or AEEMutex (for dynamic data) instead. For

pure supervisor mode data, OEMCriticalSection or OEMMutex may be used directly to avoid

a bridle transition.

35

Other Considerations

Interrupt service routines

As a result of BRIDLE activities, the BREW dispatcher has been reworked in many ways.

One change was to replace all OEMMutex_Lock() calls with equivalent

AEECriticalSection_Enter() calls. In MSM based versions of BREW, OEMMutex_Lock()

resulted in INTLOCK(), while AEECriticalSection_Enter() resolves to rex_enter_crit_sect().

While these changes result in better performance of the dispatcher (and BREW in general),

rex_enter_crit_sect() is not compatible with ISRs, as there is no task associated with an ISR.

The end result is that ISRs are no longer allowed to call directly into the BREW dispatcher (e.g.

AEE_ResumeCallback()). Instead, ISRs need to signal a task to perform this work on their

behalf.

While this may appear to introduce additional latency in this case, the BREW dispatcher has

better latency characteristics now, so the end result is roughly the same.

Static applications

Historically, static applications have had the luxury of directly making use of the underlying OS.

However, with BRIDLE, all callbacks and events are dispatched in user mode, so this is no

longer possible.

There are two options for dealing with static apps (e.g. CoreApp) that make OS calls (e.g. CM

client):

1. Use an existing BREW interface (e.g. ITAPI), which is already bridled

2. Create a new static extension class and bridle it

Code review

The security related portions of BRIDLE demand extra scrutiny during code review.

If it has been a while, reread section 2 on Responsibility before reviewing the code.

36

Other Considerations

Pay particular attention to parameter validation (BRIDLE_CHECK_*()), and the operations

performed in supervisor mode callbacks.

OAT Tests

Rigorous OAT tests need to be created/updated for any interface that will ship in source code

form or be otherwise exposed to application developers.

	Section - Introduction
	Heading 1 - In this document

	Section - Best Practices for OEMs
	Heading 1 - Enforcing the safeguards

	Section - Memory Protection
	Heading 1 - Memory regions
	Heading 1 - Scatter Load

	Section - Context Switches
	Heading 1 - Supervisor-to-User mode
	Heading 1 - User-to-Supervisor mode

	Section - Boundaries
	Heading 1 - Type II Interfaces
	Heading 1 - Thin AEE
	Heading 1 - Thick AEE
	Heading 1 - OEM API Design

	Section - BRIDLE_SWI
	Section - BRIDLE Macros
	Heading 1 - BRIDLEX_*()
	Heading 1 - PACKBRIDLEX_*()
	Heading 2 - packbridle() inline

	Heading 1 - UNPACKBRIDLEX_*()
	Heading 1 - UNPACKBRIDLE_PARAM_X
	Heading 1 - BRIDLE_CHECK_*
	Heading 1 - BRIDLE_COPY_*_USER
	Heading 1 - BRIDLE_SUBSYS_*

	Section - Examples
	Heading 1 - OEMFoo.h
	Heading 1 - BRIDLEInit.h (or BRIDLEInit_OEM.h)
	Heading 1 - BRIDLEInit.c (or BRIDLEInit_OEM.c)
	Heading 1 - bridle_foo.c
	Heading 1 - bridle_foo.h
	Heading 1 - AEEFoo.c
	Heading 1 - Complex parameter checking
	Heading 1 - Callbacks
	Heading 2 - Static Callbacks

	Heading 1 - AEECallbacks
	Heading 1 - Handles
	Heading 1 - Scatter Load

	Section - Other Considerations
	Heading 1 - Supervisor mode callback mechanisms
	Heading 1 - Locking interrupts
	Heading 1 - Interrupt service routines
	Heading 1 - Static applications
	Heading 1 - Code review
	Heading 1 - OAT Tests

